Limits, standard complexes and $\mathbf{fr}$-codes
Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1568-1591
Voir la notice de l'article provenant de la source Math-Net.Ru
For a strongly connected category $\mathscr{C}$ with pairwise coproducts, we introduce a cosimplicial object, which serves as a sort of resolution for computing higher derived functors of $\lim \colon \mathrm{Ab}^{\mathscr{C}}\to \mathrm{Ab}$. Applications involve the Künneth theorem for higher limits and $\lim$-finiteness of $\mathbf{fr}$-codes. A dictionary for the $\mathbf{fr}$-codes with words of length $\leq 3$ is given.
Bibliography: 19 titles.
Keywords:
higher limits, cosimplicial resolutions, cohomological finiteness.
@article{SM_2020_211_11_a3,
author = {S. O. Ivanov and R. V. Mikhailov and F. Yu. Pavutnitskiy},
title = {Limits, standard complexes and $\mathbf{fr}$-codes},
journal = {Sbornik. Mathematics},
pages = {1568--1591},
publisher = {mathdoc},
volume = {211},
number = {11},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a3/}
}
TY - JOUR
AU - S. O. Ivanov
AU - R. V. Mikhailov
AU - F. Yu. Pavutnitskiy
TI - Limits, standard complexes and $\mathbf{fr}$-codes
JO - Sbornik. Mathematics
PY - 2020
SP - 1568
EP - 1591
VL - 211
IS - 11
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_2020_211_11_a3/
LA - en
ID - SM_2020_211_11_a3
ER -
S. O. Ivanov; R. V. Mikhailov; F. Yu. Pavutnitskiy. Limits, standard complexes and $\mathbf{fr}$-codes. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1568-1591. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a3/