Limits, standard complexes and $\mathbf{fr}$-codes
Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1568-1591

Voir la notice de l'article provenant de la source Math-Net.Ru

For a strongly connected category $\mathscr{C}$ with pairwise coproducts, we introduce a cosimplicial object, which serves as a sort of resolution for computing higher derived functors of $\lim \colon \mathrm{Ab}^{\mathscr{C}}\to \mathrm{Ab}$. Applications involve the Künneth theorem for higher limits and $\lim$-finiteness of $\mathbf{fr}$-codes. A dictionary for the $\mathbf{fr}$-codes with words of length $\leq 3$ is given. Bibliography: 19 titles.
Keywords: higher limits, cosimplicial resolutions, cohomological finiteness.
@article{SM_2020_211_11_a3,
     author = {S. O. Ivanov and R. V. Mikhailov and F. Yu. Pavutnitskiy},
     title = {Limits, standard complexes and $\mathbf{fr}$-codes},
     journal = {Sbornik. Mathematics},
     pages = {1568--1591},
     publisher = {mathdoc},
     volume = {211},
     number = {11},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a3/}
}
TY  - JOUR
AU  - S. O. Ivanov
AU  - R. V. Mikhailov
AU  - F. Yu. Pavutnitskiy
TI  - Limits, standard complexes and $\mathbf{fr}$-codes
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1568
EP  - 1591
VL  - 211
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_11_a3/
LA  - en
ID  - SM_2020_211_11_a3
ER  - 
%0 Journal Article
%A S. O. Ivanov
%A R. V. Mikhailov
%A F. Yu. Pavutnitskiy
%T Limits, standard complexes and $\mathbf{fr}$-codes
%J Sbornik. Mathematics
%D 2020
%P 1568-1591
%V 211
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_11_a3/
%G en
%F SM_2020_211_11_a3
S. O. Ivanov; R. V. Mikhailov; F. Yu. Pavutnitskiy. Limits, standard complexes and $\mathbf{fr}$-codes. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1568-1591. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a3/