@article{SM_2020_211_11_a3,
author = {S. O. Ivanov and R. V. Mikhailov and F. Yu. Pavutnitskiy},
title = {Limits, standard complexes and $\mathbf{fr}$-codes},
journal = {Sbornik. Mathematics},
pages = {1568--1591},
year = {2020},
volume = {211},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a3/}
}
S. O. Ivanov; R. V. Mikhailov; F. Yu. Pavutnitskiy. Limits, standard complexes and $\mathbf{fr}$-codes. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1568-1591. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a3/
[1] S. A. Amitsur, “Simple algebras and cohomology groups of arbitrary fields”, Selected papers of S. A. Amitsur with commentary, v. 2, Collected Works, 16, Amer. Math. Soc., Providence, RI, 2001, 313–352 | DOI | MR | MR | Zbl
[2] S. Eilenberg, S. MacLane, “On the groups $H(\Pi,n)$. II. Methods of computation”, Ann. of Math. (2), 60 (1954), 49–139 | DOI | MR | Zbl
[3] P. G. Goerss, J. F. Jardine, Simplicial homotopy theory, Mod. Birkhäuser Class., Reprint of the 1999 original, Birkhäuser Verlag, Basel, 2009, xvi+510 pp. | DOI | MR | Zbl
[4] K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Math., 143, Springer-Verlag, Berlin–New York, 1970, xiv+275 pp. | DOI | MR | Zbl
[5] K. W. Gruenberg, “Resolutions by relations”, J. London Math. Soc., 35:4 (1960), 481–494 | DOI | MR | Zbl
[6] S. O. Ivanov, R. Mikhailov, “A higher limit approach to homology theories”, J. Pure Appl. Algebra, 219:6 (2015), 1915–1939 | DOI | MR | Zbl
[7] S. O. Ivanov, R. Mikhailov, “Higher limits, homology theories and $\mathbf{fr}$-codes”, Combinatorial and toric homotopy, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Sci. Publ., Hackensack, NJ, 2018, 229–261 | DOI | MR | Zbl
[8] S. O. Ivanov, R. V. Mikhailov, V. A. Sosnilo, “Higher colimits, derived functors and homology”, Sb. Math., 210:9 (2019), 1222–1258 | DOI | DOI | MR | Zbl
[9] R. Karan, D. Kumar, L. R. Vermani, “Some intersection theorems and subgroups determined by certain ideals in integral group rings. II”, Algebra Colloq., 9:2 (2002), 135–142 | MR | Zbl
[10] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, 2nd ed., Springer-Verlag, New York, 2013, 332 pp. | MR | Zbl
[11] J.-P. Meyer, “Cosimplicial homotopies”, Proc. Amer. Math. Soc., 108:1 (1990), 9–17 | DOI | MR | Zbl
[12] R. Mikhailov, I. B. S. Passi, “Generalized dimension subgroups and derived functors”, J. Pure Appl. Algebra, 220:6 (2016), 2143–2163 | DOI | MR | Zbl
[13] R. Mikhailov, I. B. S. Passi, “Free group rings and derived functors”, European congress of mathematics, Eur. Math. Soc., Zürich, 2018, 407–425 | DOI | MR | Zbl
[14] R. Mikhailov, I. B. S. Passi, “Dimension quotients, Fox subgroups and limits of functors”, Forum Math., 31:2 (2019), 385–401 | DOI | MR | Zbl
[15] T. I. Pirashvili, “Spektralnaya posledovatelnost epimorfizma. I”, Tr. Tbilis. matem. in-ta, 70, 1982, 69–91 | MR | Zbl
[16] D. G. Quillen, Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin–New York, 2006, iv+156 pp. | DOI | MR | Zbl
[17] A. Rosenberg, D. Zelinsky, “On Amitsur's complex”, Trans. Amer. Math. Soc., 97:2 (1960), 327–356 | DOI | MR | Zbl
[18] D. Stevenson, “Décalage and Kan's simplicial loop group functor”, Theory Appl. Categ., 26:28 (2012), 768–787 | MR | Zbl
[19] Ch. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38, Cambridge Univ. Press, Cambridge, 1995, xiv+450 pp. | DOI | MR | Zbl