@article{SM_2020_211_11_a2,
author = {A. K. Gushchin},
title = {Extensions of the space of continuous functions and embedding theorems},
journal = {Sbornik. Mathematics},
pages = {1551--1567},
year = {2020},
volume = {211},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a2/}
}
A. K. Gushchin. Extensions of the space of continuous functions and embedding theorems. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1551-1567. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a2/
[1] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl
[2] S. L. Sobolev, “Ob odnoi kraevoi zadache dlya poligarmonicheskogo uravneniya”, Matem. sb., 2(44):3 (1937), 465–499 | Zbl
[3] S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, RI, 1963, vii+239 pp. | MR | MR | Zbl
[4] V. P. Mikhaĭlov, Partial differential equations, Mir, Moscow, 1978, 396 pp. | MR | MR | Zbl | Zbl
[5] O. I. Bogoyavlenskii, V. S. Vladimirov, I. V. Volovich, A. K. Gushchin, Yu. N. Drozhzhinov, V. V. Zharinov, V. P. Mikhailov, “Boundary value problems of mathematical physics”, Proc. Steklov Inst. Math., 175 (1988), 65–105 | MR | Zbl
[6] V. P. Mikhailov, A. K. Guschin, “Dopolnitelnye glavy kursa «Uravneniya matematicheskoi fiziki»”, Lekts. kursy NOTs, 7, MIAN, M., 2007, 3–144 | DOI | Zbl
[7] V. P. Mikhaĭlov, “Dirichlet's problem for a second-order elliptic equation”, Differ. Equ., 12:10 (1977), 1320–1329 | MR | Zbl
[8] A. K. Guschin, V. P. Mikhailov, “O granichnykh znacheniyakh reshenii ellipticheskikh uravnenii”, Obobschennye funktsii i ikh primeneniya v matematicheskoi fizike (Moskva, 1980), VTs AN SSSR, M., 1981, 189–205 | MR | Zbl
[9] A. K. Gushchin, V. P. Mikhaĭlov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl
[10] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020 | DOI | DOI | MR | Zbl
[11] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, Theoret. and Math. Phys., 180:2 (2014), 917–931 | DOI | DOI | MR | Zbl
[12] V. Zh. Dumanyan, “On solvability of the Dirichlet problem with the boundary function in $L_2$ for a second-order elliptic equation”, J. Contemp. Math. Anal., 50:4 (2015), 153–166 | DOI | MR | Zbl
[13] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | Zbl
[14] A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409 | DOI | DOI | MR | Zbl
[15] A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839 | DOI | DOI | MR | Zbl
[16] A. K. Guschin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219 | DOI | DOI | MR | Zbl
[17] A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439 | DOI | DOI | MR | Zbl
[18] N. A. Gusev, “On the definitions of boundary values of generalized solutions to an elliptic-type equation”, Proc. Steklov Inst. Math., 301 (2018), 39–43 | DOI | DOI | MR | Zbl
[19] F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem with variable nonlinearity exponents”, Sb. Math., 209:5 (2018), 714–738 | DOI | DOI | MR | Zbl
[20] F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem for an equation with diffuse measure”, Proc. Steklov Inst. Math., 306 (2019), 178–195 | DOI | DOI | MR | Zbl
[21] F. Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | Zbl
[22] L. M. Kozhevnikova, “Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents”, Sb. Math., 210:3 (2019), 417–446 | DOI | DOI | MR | Zbl
[23] M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theoret. and Math. Phys., 191:2 (2017), 661–668 | DOI | DOI | MR | Zbl
[24] M. O. Katanaev, “Chern–Simons action and disclinations”, Proc. Steklov Inst. Math., 301 (2018), 114–133 | DOI | DOI | MR | Zbl
[25] M. O. Katanaev, “Description of disclinations and dislocations by the Chern–Simons action for $\mathbb{SO}(3)$ connection”, Phys. Part. Nuclei, 49:5 (2018), 890–893 | DOI
[26] V. V. Zharinov, “Lie–Poisson structures over differential algebras”, Theoret. and Math. Phys., 192:3 (2017), 1337–1349 | DOI | DOI | MR | Zbl
[27] V. V. Zharinov, “Analysis in algebras and modules”, Proc. Steklov Inst. Math., 301 (2018), 98–108 | DOI | DOI | MR | Zbl
[28] V. V. Zharinov, “Analysis in noncommutative algebras and modules”, Proc. Steklov Inst. Math., 306 (2019), 90–101 | DOI | DOI | MR | Zbl
[29] A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271 | DOI | DOI | MR | Zbl
[30] O. Frostman, “Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions”, Medd. Lunds Univ. Mat. Sem., 3 (1935), 1–118 | Zbl
[31] L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1967, v+151 pp. | MR | MR | Zbl | Zbl
[32] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl
[33] H. Federer, “The area of a nonparametric surface”, Proc. Amer. Math. Soc., 11:3 (1960), 436–439 | DOI | MR | Zbl