Extensions of the space of continuous functions and embedding theorems
Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1551-1567 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The machinery of $s$-dimensionally continuous functions is developed for the purpose of applying it to the Dirichlet problem for elliptic equations. With this extension of the space of continuous functions, new generalized definitions of classical and generalized solutions of the Dirichlet problem are given. Relations of these spaces of $s$-dimensionally continuous functions to other known function spaces are studied. This has led to a new construction (seemingly more successful and closer to the classical one) of $s$-dimensionally continuous functions, using which new properties of such spaces have been identified. The embeddings of the space $C_{s,p}(\overline Q)$ in $C_{s',p'}(\overline Q)$ for $s'>s$ and $p'>p$, and, in particular, in $ L_q(Q)$ are proved. Previously, $W^1_2(Q)$ was shown to embed in $C_{n-1,2}(\overline Q)$, which secures the $(n-1)$-dimensional continuity of generalized solutions. In the present paper, the more general embedding of $W^1_r(Q)$ in $C_{s,p}(\overline Q)$ is verified and the corresponding exponents are shown to be sharp. Bibliography: 33 titles.
@article{SM_2020_211_11_a2,
     author = {A. K. Gushchin},
     title = {Extensions of the space of continuous functions and embedding theorems},
     journal = {Sbornik. Mathematics},
     pages = {1551--1567},
     year = {2020},
     volume = {211},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a2/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - Extensions of the space of continuous functions and embedding theorems
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1551
EP  - 1567
VL  - 211
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_11_a2/
LA  - en
ID  - SM_2020_211_11_a2
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T Extensions of the space of continuous functions and embedding theorems
%J Sbornik. Mathematics
%D 2020
%P 1551-1567
%V 211
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2020_211_11_a2/
%G en
%F SM_2020_211_11_a2
A. K. Gushchin. Extensions of the space of continuous functions and embedding theorems. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1551-1567. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a2/

[1] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[2] S. L. Sobolev, “Ob odnoi kraevoi zadache dlya poligarmonicheskogo uravneniya”, Matem. sb., 2(44):3 (1937), 465–499 | Zbl

[3] S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, RI, 1963, vii+239 pp. | MR | MR | Zbl

[4] V. P. Mikhaĭlov, Partial differential equations, Mir, Moscow, 1978, 396 pp. | MR | MR | Zbl | Zbl

[5] O. I. Bogoyavlenskii, V. S. Vladimirov, I. V. Volovich, A. K. Gushchin, Yu. N. Drozhzhinov, V. V. Zharinov, V. P. Mikhailov, “Boundary value problems of mathematical physics”, Proc. Steklov Inst. Math., 175 (1988), 65–105 | MR | Zbl

[6] V. P. Mikhailov, A. K. Guschin, “Dopolnitelnye glavy kursa «Uravneniya matematicheskoi fiziki»”, Lekts. kursy NOTs, 7, MIAN, M., 2007, 3–144 | DOI | Zbl

[7] V. P. Mikhaĭlov, “Dirichlet's problem for a second-order elliptic equation”, Differ. Equ., 12:10 (1977), 1320–1329 | MR | Zbl

[8] A. K. Guschin, V. P. Mikhailov, “O granichnykh znacheniyakh reshenii ellipticheskikh uravnenii”, Obobschennye funktsii i ikh primeneniya v matematicheskoi fizike (Moskva, 1980), VTs AN SSSR, M., 1981, 189–205 | MR | Zbl

[9] A. K. Gushchin, V. P. Mikhaĭlov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl

[10] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020 | DOI | DOI | MR | Zbl

[11] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, Theoret. and Math. Phys., 180:2 (2014), 917–931 | DOI | DOI | MR | Zbl

[12] V. Zh. Dumanyan, “On solvability of the Dirichlet problem with the boundary function in $L_2$ for a second-order elliptic equation”, J. Contemp. Math. Anal., 50:4 (2015), 153–166 | DOI | MR | Zbl

[13] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | Zbl

[14] A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409 | DOI | DOI | MR | Zbl

[15] A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839 | DOI | DOI | MR | Zbl

[16] A. K. Guschin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219 | DOI | DOI | MR | Zbl

[17] A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439 | DOI | DOI | MR | Zbl

[18] N. A. Gusev, “On the definitions of boundary values of generalized solutions to an elliptic-type equation”, Proc. Steklov Inst. Math., 301 (2018), 39–43 | DOI | DOI | MR | Zbl

[19] F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem with variable nonlinearity exponents”, Sb. Math., 209:5 (2018), 714–738 | DOI | DOI | MR | Zbl

[20] F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem for an equation with diffuse measure”, Proc. Steklov Inst. Math., 306 (2019), 178–195 | DOI | DOI | MR | Zbl

[21] F. Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | Zbl

[22] L. M. Kozhevnikova, “Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents”, Sb. Math., 210:3 (2019), 417–446 | DOI | DOI | MR | Zbl

[23] M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theoret. and Math. Phys., 191:2 (2017), 661–668 | DOI | DOI | MR | Zbl

[24] M. O. Katanaev, “Chern–Simons action and disclinations”, Proc. Steklov Inst. Math., 301 (2018), 114–133 | DOI | DOI | MR | Zbl

[25] M. O. Katanaev, “Description of disclinations and dislocations by the Chern–Simons action for $\mathbb{SO}(3)$ connection”, Phys. Part. Nuclei, 49:5 (2018), 890–893 | DOI

[26] V. V. Zharinov, “Lie–Poisson structures over differential algebras”, Theoret. and Math. Phys., 192:3 (2017), 1337–1349 | DOI | DOI | MR | Zbl

[27] V. V. Zharinov, “Analysis in algebras and modules”, Proc. Steklov Inst. Math., 301 (2018), 98–108 | DOI | DOI | MR | Zbl

[28] V. V. Zharinov, “Analysis in noncommutative algebras and modules”, Proc. Steklov Inst. Math., 306 (2019), 90–101 | DOI | DOI | MR | Zbl

[29] A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271 | DOI | DOI | MR | Zbl

[30] O. Frostman, “Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions”, Medd. Lunds Univ. Mat. Sem., 3 (1935), 1–118 | Zbl

[31] L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1967, v+151 pp. | MR | MR | Zbl | Zbl

[32] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl

[33] H. Federer, “The area of a nonparametric surface”, Proc. Amer. Math. Soc., 11:3 (1960), 436–439 | DOI | MR | Zbl