Mots-clés : Sturm-Liouville problem, Riccati equation.
@article{SM_2020_211_11_a1,
author = {D. V. Valovik},
title = {On the integral characteristic function of the {Sturm-Liouville} problem},
journal = {Sbornik. Mathematics},
pages = {1539--1550},
year = {2020},
volume = {211},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a1/}
}
D. V. Valovik. On the integral characteristic function of the Sturm-Liouville problem. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1539-1550. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a1/
[1] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl
[2] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Acad. Publ., Dordrecht, 1991, xii+350 pp. | DOI | MR | MR | Zbl | Zbl
[3] A. G. Kostyuchenko, I. S. Sargsyan, Raspredelenie sobstvennykh znachenii, Nauka, M., 1979, 400 pp. | MR | Zbl
[4] F. V. Atkinson, Discrete and continuous boundary problems, Math. Sci. Eng., 8, Academic Press, New York–London, 1964, xiv+570 pp. | MR | MR | Zbl | Zbl
[5] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser Verlag, Basel, 1986, xii+367 pp. | DOI | MR | MR | Zbl | Zbl
[6] G. Sansone, Equazioni differenziali nel campo reale, v. 1, 2nd ed., N. Zanichelli, Bologna, 1948, xvii+400 pp. | MR | Zbl
[7] Ph. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl
[8] Yu. G. Smirnov, “Eigenvalue transmission problems describing the propagation of TE and TM waves in two-layered inhomogeneous anisotropic cylindrical and planar waveguides”, Comput. Math. Math. Phys., 55:3 (2015), 461–469 | DOI | DOI | MR | Zbl
[9] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. Math. Monogr., 71, Amer. Math. Soc., Providence, RI, 1988, iv+250 pp. | MR | MR | Zbl | Zbl
[10] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl
[11] J. Ben Amara, A. A. Shkalikov, “A Sturm–Liouville problem with physical and spectral parameters in boundary conditions”, Math. Notes, 66:2 (1999), 127–134 | DOI | DOI | MR | Zbl
[12] R. Mennicken, H. Schmid, A. A. Shkalikov, “On the eigenvalue accumulation of Sturm–Liouville problems depending nonlinearly on the spectral parameter”, Math. Nachr., 189:1 (1998), 157–170 | DOI | MR | Zbl
[13] H. Hochstadt, “Asymptotic estimates for the Sturm–Liouville spectrum”, Comm. Pure Appl. Math., 14:4 (1961), 749–764 | DOI | MR | Zbl
[14] Ch. T. Fulton, “Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions”, Proc. Roy. Soc. Edinburgh Sect. A, 77:3-4 (1977), 293–308 | DOI | MR | Zbl
[15] P. A. Binding, P. J. Browne, K. Seddighi, “Sturm–Liouville problems with eigenparameter dependent boundary conditions”, Proc. Edinburgh Math. Soc. (2), 37:1 (1994), 57–72 | DOI | MR | Zbl
[16] J. Walter, “Regular eigenvalue problems with eigenvalue parameter in the boundary condition”, Math. Z., 133:4 (1973), 301–312 | DOI | MR | Zbl
[17] H. Coşkun, N. Bayram, “Asymptotics of eigenvalues for regular Sturm–Liouville problems with eigenvalue parameter in the boundary condition”, J. Math. Anal. Appl., 306:2 (2005), 548–566 | DOI | MR | Zbl
[18] N. Yu. Kapustin, “Oscillation properties of solutions to a nonselfadjoint spectral problem with spectral parameter in the boundary condition”, Differ. Equ., 35:8 (1999), 1031–1034 | MR | Zbl
[19] N. B. Kerimov, Kh. R. Mamedov, “On one boundary value problem with a spectral parameter in the boundary conditions”, Siberian Math. J., 40:2 (1999), 281–290 | DOI | MR | Zbl
[20] N. Yu. Kapustin, E. I. Moiseev, “The basis property in $L_p$ of the systems of eigenfunctions corresponding to two problems with a spectral parameter in the boundary condition”, Differ. Equ., 36:10 (2000), 1498–1501 | DOI | MR | Zbl
[21] Z. S. Aliev, A. A. Dun'yamalieva, “Basis properties of root functions of the Sturm–Liouville problem with a spectral parameter in the boundary conditions”, Dokl. Math., 88:1 (2013), 441–445 | DOI | MR | Zbl
[22] N. B. Kerimov, R. G. Poladov, “Basis properties of the system of eigenfunctions in the Sturm–Liouville problem with a spectral parameter in the boundary conditions”, Dokl. Math., 85:1 (2012), 8–13 | DOI | MR | Zbl
[23] D. B. Marchenkov, “Basis property in $L_p(0,1)$ of the system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition”, Differ. Equ., 42:6 (2006), 905–908 | DOI | MR | Zbl
[24] F. G. Tricomi, Differential equations, Hafner Publishing Co., New York; Blackie Son Ltd., London, 1961, x+273 pp. | MR | MR | Zbl | Zbl
[25] R. Courant, D. Hilbert, Methoden der mathematischen Physik, v. I, Grundlehren Math. Wiss., 12, 2. verb. Aufl., Julius Springer, Berlin, 1931, xiv+469 pp. | MR | MR | Zbl | Zbl
[26] V. P. Mikhaĭlov, Partial differential equations, Mir, Moscow, 1978, 397 pp. | MR | MR
[27] S. V. Kurochkin, “Existence conditions of negative eigenvalues in the regular Sturm–Liouville boundary value problem and explicit expressions for their number”, Comput. Math. Math. Phys., 58:12 (2018), 1937–1947 | DOI | DOI | MR | Zbl
[28] D. V. Valovik, “Propagation of electromagnetic waves in an open planar dielectric waveguide filled with an nonlinear medium I: TE waves”, Comput. Math. Math. Phys., 59:6 (2019), 958–977 | DOI | DOI | MR | Zbl
[29] D. V. Valovik, “Propagation of electromagnetic waves in an open planar dielectric waveguide filled with a nonlinear medium II: TM waves”, Comput. Math. Math. Phys., 60:3 (2020), 427–447 | DOI | DOI | MR
[30] D. V. Valovik, “Study of a nonlinear eigenvalue problem by the integral characteristic equation method”, Differ. Equ., 56:2 (2020), 171–184 | DOI | DOI | Zbl
[31] D. V. Valovik, “Integral dispersion equation method to solve a nonlinear boundary eigenvalue problem”, Nonlinear Anal. Real World Appl., 20 (2014), 52–58 | DOI | MR | Zbl