Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space
Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1503-1538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider geodesic billiards on quadrics in $\mathbb{R}^3$. We consider the motion of a point mass inside a billiard table, that is, inside a domain lying on a quadric bounded by finitely many quadrics confocal with the given one and having angles at corner points of the boundary equal to ${\pi}/{2}$. According to the well-known Jacobi-Chasles theorem this problem turns out to be integrable. We introduce an equivalence relation on the set of billiard tables and prove a theorem on their classification. We present a complete classification of geodesic billiards on quadrics in $\mathbb{R}^3$ up to Liouville equivalence. Bibliography: 19 titles.
Keywords: integrable system, geodesic billiard
Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2020_211_11_a0,
     author = {G. V. Belozerov},
     title = {Topological classification of integrable geodesic billiards on quadrics in three-dimensional {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {1503--1538},
     year = {2020},
     volume = {211},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a0/}
}
TY  - JOUR
AU  - G. V. Belozerov
TI  - Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1503
EP  - 1538
VL  - 211
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_11_a0/
LA  - en
ID  - SM_2020_211_11_a0
ER  - 
%0 Journal Article
%A G. V. Belozerov
%T Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space
%J Sbornik. Mathematics
%D 2020
%P 1503-1538
%V 211
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2020_211_11_a0/
%G en
%F SM_2020_211_11_a0
G. V. Belozerov. Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1503-1538. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a0/

[1] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | MR | Zbl | Zbl

[2] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl

[3] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl

[4] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl

[5] V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl

[6] V. V. Fokicheva, “Description of singularities for system ‘billiard in an ellipse’ ”, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl

[7] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl

[8] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl

[9] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173 | DOI | DOI | MR | Zbl

[10] V. V. Vedyushkina, A. T. Fomenko, “Reducing the degree of integrals of Hamiltonian systems by using billiards”, Dokl. Math., 99:3 (2019), 266–269 | DOI | DOI | Zbl

[11] A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow Univ. Math. Bull., 74:3 (2019), 98–107 | DOI | MR | Zbl

[12] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl

[13] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | DOI | MR | Zbl

[14] V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | DOI | MR | Zbl

[15] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[16] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl

[17] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[18] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl

[19] V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363 | DOI | DOI | MR | Zbl