Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space
Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1503-1538
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider geodesic billiards on quadrics in $\mathbb{R}^3$. We consider the motion of a point mass inside a billiard table, that is, inside a domain lying on a quadric bounded by finitely many quadrics confocal with the given one and having angles at corner points of the boundary equal to ${\pi}/{2}$. According to the well-known Jacobi-Chasles theorem this problem turns out to be integrable. We introduce an equivalence relation on the set of billiard tables and prove a theorem on their classification. We present a complete classification of geodesic billiards on quadrics in $\mathbb{R}^3$ up to Liouville equivalence.
Bibliography: 19 titles.
Keywords:
integrable system, geodesic billiard
Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
Mots-clés : Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2020_211_11_a0,
author = {G. V. Belozerov},
title = {Topological classification of integrable geodesic billiards on quadrics in three-dimensional {Euclidean} space},
journal = {Sbornik. Mathematics},
pages = {1503--1538},
publisher = {mathdoc},
volume = {211},
number = {11},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_11_a0/}
}
TY - JOUR AU - G. V. Belozerov TI - Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space JO - Sbornik. Mathematics PY - 2020 SP - 1503 EP - 1538 VL - 211 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2020_211_11_a0/ LA - en ID - SM_2020_211_11_a0 ER -
G. V. Belozerov. Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space. Sbornik. Mathematics, Tome 211 (2020) no. 11, pp. 1503-1538. http://geodesic.mathdoc.fr/item/SM_2020_211_11_a0/