Hermite-Pad\'e approximants to the Weyl function and its derivative for discrete measures
Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1486-1502

Voir la notice de l'article provenant de la source Math-Net.Ru

Hermite-Padé approximants of the second kind to the Weyl function and its derivatives are investigated. The Weyl function is constructed from the orthogonal Meixner polynomials. The limiting distribution of the zeros of the common denominators of these approximants, which are multiple orthogonal polynomials for a discrete measure, is found. It is proved that the limit measure is the unique solution of the equilibrium problem in the theory of the logarithmic potential with an Angelesco matrix. The effect of pushing some zeros off the real axis to some curve in the complex plane is discovered. An explicit form of the limit measure in terms of algebraic functions is given. Bibliography: 10 titles.
Keywords: Meixner polynomials, equilibrium problems in logarithmic potential theory, Riemann surfaces, algebraic functions.
@article{SM_2020_211_10_a5,
     author = {V. N. Sorokin},
     title = {Hermite-Pad\'e approximants to the {Weyl} function and its derivative for discrete measures},
     journal = {Sbornik. Mathematics},
     pages = {1486--1502},
     publisher = {mathdoc},
     volume = {211},
     number = {10},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a5/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - Hermite-Pad\'e approximants to the Weyl function and its derivative for discrete measures
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1486
EP  - 1502
VL  - 211
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_10_a5/
LA  - en
ID  - SM_2020_211_10_a5
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T Hermite-Pad\'e approximants to the Weyl function and its derivative for discrete measures
%J Sbornik. Mathematics
%D 2020
%P 1486-1502
%V 211
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_10_a5/
%G en
%F SM_2020_211_10_a5
V. N. Sorokin. Hermite-Pad\'e approximants to the Weyl function and its derivative for discrete measures. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1486-1502. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a5/