@article{SM_2020_211_10_a5,
author = {V. N. Sorokin},
title = {Hermite-Pad\'e approximants to the {Weyl} function and its derivative for discrete measures},
journal = {Sbornik. Mathematics},
pages = {1486--1502},
year = {2020},
volume = {211},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a5/}
}
V. N. Sorokin. Hermite-Padé approximants to the Weyl function and its derivative for discrete measures. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1486-1502. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a5/
[1] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | MR | Zbl | Zbl
[2] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | DOI | MR | MR | Zbl | Zbl
[3] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | MR | Zbl | Zbl
[4] V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures”, Sb. Math., 201:10 (2010), 1539–1561 | DOI | DOI | MR | Zbl
[5] A. A. Kandayan, V. N. Sorokin, “Multipoint Hermite–Padé approximations for beta functions”, Math. Notes, 87:2 (2010), 204–217 | DOI | DOI | MR | Zbl
[6] V. N. Sorokin, “Generalized Pollaczek polynomials”, Sb. Math., 200:4 (2009), 577–595 | DOI | DOI | MR | Zbl
[7] V. N. Sorokin, E. N. Cherednikova, “Mnogochleny Meiksnera s peremennym vesom”, Sovremennye problemy matematiki i mekhaniki, VI:1 (2011), 118–125
[8] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl
[9] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Padé–Chebyshev approximants of multivalued analytic functions, variation of equilibrium energy, and the $S$-property of stationary compact sets”, Russian Math. Surveys, 66:6 (2011), 1015–1048 | DOI | DOI | MR | Zbl
[10] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium energy and the $S$-property of stationary compact sets”, Sb. Math., 202:12 (2011), 1831–1852 | DOI | DOI | MR | Zbl