@article{SM_2020_211_10_a4,
author = {Yu. L. Sachkov and E. F. Sachkova},
title = {The structure of abnormal extremals in {a~sub-Riemannian} problem with growth vector $(2, 3, 5, 8)$},
journal = {Sbornik. Mathematics},
pages = {1460--1485},
year = {2020},
volume = {211},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a4/}
}
TY - JOUR AU - Yu. L. Sachkov AU - E. F. Sachkova TI - The structure of abnormal extremals in a sub-Riemannian problem with growth vector $(2, 3, 5, 8)$ JO - Sbornik. Mathematics PY - 2020 SP - 1460 EP - 1485 VL - 211 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2020_211_10_a4/ LA - en ID - SM_2020_211_10_a4 ER -
Yu. L. Sachkov; E. F. Sachkova. The structure of abnormal extremals in a sub-Riemannian problem with growth vector $(2, 3, 5, 8)$. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1460-1485. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a4/
[1] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization, II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl
[2] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp. | MR | Zbl
[3] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2019, xviii+745 pp. | DOI | MR | Zbl
[4] Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Sb. Math., 194:9 (2003), 1331–1359 | DOI | DOI | MR | Zbl
[5] A. A. Ardentov, Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl
[6] Yu. L. Sachkov, E. F. Sachkova, “Degenerate abnormal trajectories in a sub-Riemannian problem with growth vector (2,3,5,8)”, Differ. Equ., 53:3 (2017), 352–365 | DOI | MR | Zbl
[7] L. V. Lokutsievskiy, Yu. L. Sachkov, “Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater”, Sb. Math., 209:5 (2018), 672–713 | DOI | DOI | MR | Zbl
[8] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | MR | Zbl | Zbl
[9] R. Montgomery, “Abnormal minimizers”, SIAM J. Control Optim., 32:6 (1994), 1605–1620 | DOI | MR | Zbl
[10] R. Montgomery, “Survey of singular geodesics”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 325–339 | DOI | MR | Zbl
[11] A. A. Agrachev, A. V. Sarychev, “Filtrations of a Lie algebra of vector fields and the nilpotent approximation of controllable systems”, Dokl. Math., 36:1 (1988), 104–108 | MR | Zbl
[12] J.-P. Gauthier, Yu. L. Sachkov, “On the free Carnot $(2, 3, 5, 8)$ group”, Programmnye sistemy: teoriya i prilozheniya, 6:2 (2015), 45–61 | DOI
[13] A. A. Kirillov, Lectures on the orbit method, Grad. Stud. Math., 64, Amer. Math. Soc., Providence, RI, 2004, xx+408 pp. | DOI | MR | Zbl
[14] A. I. Markushevich, The theory of analytic functions: a brief course, Mir Publishers, Moscow, 1983, 423 pp. | MR | MR | Zbl | Zbl