Topologically projective, injective and flat modules of harmonic analysis
Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1447-1459
Voir la notice de l'article provenant de la source Math-Net.Ru
We study homologically trivial modules of harmonic analysis on a locally compact group $G$. For $L_1(G)$- and $M(G)$-modules $C_0(G)$, $L_p(G)$ and $M(G)$ we give criteria for metric and topological projectivity, injectivity and flatness. In most cases, modules with these properties must be finite-dimensional.
Bibliography: 18 titles.
Keywords:
Banach module, projectivity, injectivity, flatness, harmonic analysis.
@article{SM_2020_211_10_a3,
author = {N. T. Nemesh},
title = {Topologically projective, injective and flat modules of harmonic analysis},
journal = {Sbornik. Mathematics},
pages = {1447--1459},
publisher = {mathdoc},
volume = {211},
number = {10},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a3/}
}
N. T. Nemesh. Topologically projective, injective and flat modules of harmonic analysis. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1447-1459. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a3/