Topologically projective, injective and flat modules of harmonic analysis
Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1447-1459

Voir la notice de l'article provenant de la source Math-Net.Ru

We study homologically trivial modules of harmonic analysis on a locally compact group $G$. For $L_1(G)$- and $M(G)$-modules $C_0(G)$, $L_p(G)$ and $M(G)$ we give criteria for metric and topological projectivity, injectivity and flatness. In most cases, modules with these properties must be finite-dimensional. Bibliography: 18 titles.
Keywords: Banach module, projectivity, injectivity, flatness, harmonic analysis.
@article{SM_2020_211_10_a3,
     author = {N. T. Nemesh},
     title = {Topologically projective, injective and flat modules of harmonic analysis},
     journal = {Sbornik. Mathematics},
     pages = {1447--1459},
     publisher = {mathdoc},
     volume = {211},
     number = {10},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a3/}
}
TY  - JOUR
AU  - N. T. Nemesh
TI  - Topologically projective, injective and flat modules of harmonic analysis
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1447
EP  - 1459
VL  - 211
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_10_a3/
LA  - en
ID  - SM_2020_211_10_a3
ER  - 
%0 Journal Article
%A N. T. Nemesh
%T Topologically projective, injective and flat modules of harmonic analysis
%J Sbornik. Mathematics
%D 2020
%P 1447-1459
%V 211
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_10_a3/
%G en
%F SM_2020_211_10_a3
N. T. Nemesh. Topologically projective, injective and flat modules of harmonic analysis. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1447-1459. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a3/