Topologically projective, injective and flat modules of harmonic analysis
Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1447-1459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study homologically trivial modules of harmonic analysis on a locally compact group $G$. For $L_1(G)$- and $M(G)$-modules $C_0(G)$, $L_p(G)$ and $M(G)$ we give criteria for metric and topological projectivity, injectivity and flatness. In most cases, modules with these properties must be finite-dimensional. Bibliography: 18 titles.
Keywords: Banach module, projectivity, injectivity, flatness, harmonic analysis.
@article{SM_2020_211_10_a3,
     author = {N. T. Nemesh},
     title = {Topologically projective, injective and flat modules of harmonic analysis},
     journal = {Sbornik. Mathematics},
     pages = {1447--1459},
     year = {2020},
     volume = {211},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a3/}
}
TY  - JOUR
AU  - N. T. Nemesh
TI  - Topologically projective, injective and flat modules of harmonic analysis
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1447
EP  - 1459
VL  - 211
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_10_a3/
LA  - en
ID  - SM_2020_211_10_a3
ER  - 
%0 Journal Article
%A N. T. Nemesh
%T Topologically projective, injective and flat modules of harmonic analysis
%J Sbornik. Mathematics
%D 2020
%P 1447-1459
%V 211
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2020_211_10_a3/
%G en
%F SM_2020_211_10_a3
N. T. Nemesh. Topologically projective, injective and flat modules of harmonic analysis. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1447-1459. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a3/

[1] H. G. Dales, M. E. Polyakov, “Homological properties of modules over group algebras”, Proc. London Math. Soc. (3), 89:2 (2004), 390–426 | DOI | MR | Zbl

[2] P. Ramsden, Homological properties of semigroup algebras, Ph.D. thesis, Univ. of Leeds, 2009, 136 pp.

[3] G. Racher, “Injective modules and amenable groups”, Comment. Math. Helv., 88:4 (2013), 1023–1031 | DOI | MR | Zbl

[4] A. W. M. Graven, “Injective and projective Banach modules”, Nederl. Akad. Wetensch. Indag. Math., 82:1 (1979), 253–272 | DOI | MR | Zbl

[5] M. C. White, “Injective modules for uniform algebras”, Proc. London Math. Soc. (3), 73:1 (1996), 155–184 | DOI | MR | Zbl

[6] A. J. Helemskiĭ, “On the homological dimension of normed modules over Banach algebras”, Math. USSR-Sb., 10:3 (1970), 399–411 | DOI | MR | Zbl

[7] A. Ya. Helemskii, Banach and locally convex algebras, Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York, 1993, xvi+446 pp. | MR | MR | Zbl | Zbl

[8] N. T. Nemesh, “The geometry of projective, injective, and flat Banach modules”, J. Math. Sci. (N.Y.), 237:3 (2019), 445–459 | DOI | MR | Zbl

[9] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monogr. (N.S.), 24, The Clarendon Press, Oxford Univ. Press, New York, 2000, xviii+907 pp. | MR | Zbl

[10] J. G. Wendel, “Left centralizers and isomorphisms of group algebras”, Pacific J. Math., 2:2 (1952), 251–261 | DOI | MR | Zbl

[11] N. T. Nemesh, “Metrically and topologically projective ideals of Banach algebras”, Math. Notes, 99:4 (2016), 524–533 | DOI | DOI | MR | Zbl

[12] A. Defant, K. Floret, Tensor norms and operator ideals, North-Holland Math. Stud., 176, North-Holland Publishing Co., Amsterdam, 1993, xii+566 pp. | MR | Zbl

[13] H. P. Rosenthal, “On relatively disjoint families of measures, with some applications to Banach space theory”, Studia Math., 37:1 (1970), 13–36 | DOI | MR | Zbl

[14] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Stud. Adv. Math., 25, Cambridge Univ. Press, Cambridge, 1996, xiv+382 pp. | DOI | MR | Zbl

[15] F. Albiac, N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, Springer, New York, 2006, xii+373 pp. | DOI | MR | Zbl

[16] A. T.-M. Lau, V. Losert, “Complementation of certain subspaces of $L_\infty(G)$ of a locally compact group”, Pacific J. Math., 141:2 (1990), 295–310 | DOI | MR | Zbl

[17] Yu. I. Lyubich, O. A. Shatalova, “Isometric embeddings of finite-dimensional $\ell_p$-spaces over the quaternions”, Algebra i analiz, 16:1 (2004), 15–32 ; St. Petersburg Math. J., 16:1 (2005), 9–24 | MR | Zbl | DOI

[18] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972, iii+96 pp. | MR | Zbl