The problem of distinguishing between a centre and a focus in the space of vector fields with given Newton diagram
Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1399-1446 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the problem of distinguishing between a centre and a focus in the class of analytic vector fields with fixed Newton diagram, which satisfy certain natural conditions of general position. A method is proposed for constructing explicit expressions for the coefficients in the asymptotic representation of the monodromy transformation, known as the Dulac series. These are analogous to the Lyapunov focal quantities. These coefficients make it possible — up to an infinite-codimensional set of exceptional cases — to complete the stability analysis for a compound monodromic (that is, centre-focus) singular point. A computer-aided calculation of formulae for coefficients of the Dulac series is presented. Examples are treated of Newton diagrams with two and three edges. Bibliography: 30 titles.
Keywords: Dulac series, Newton diagram
Mots-clés : monodromic singular point, monodromy transformation, transition map.
@article{SM_2020_211_10_a2,
     author = {N. B. Medvedeva},
     title = {The problem of distinguishing between a~centre and a~focus in the space of vector fields with given {Newton} diagram},
     journal = {Sbornik. Mathematics},
     pages = {1399--1446},
     year = {2020},
     volume = {211},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a2/}
}
TY  - JOUR
AU  - N. B. Medvedeva
TI  - The problem of distinguishing between a centre and a focus in the space of vector fields with given Newton diagram
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1399
EP  - 1446
VL  - 211
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_10_a2/
LA  - en
ID  - SM_2020_211_10_a2
ER  - 
%0 Journal Article
%A N. B. Medvedeva
%T The problem of distinguishing between a centre and a focus in the space of vector fields with given Newton diagram
%J Sbornik. Mathematics
%D 2020
%P 1399-1446
%V 211
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2020_211_10_a2/
%G en
%F SM_2020_211_10_a2
N. B. Medvedeva. The problem of distinguishing between a centre and a focus in the space of vector fields with given Newton diagram. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1399-1446. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a2/

[1] N. B. Medvedeva, “Osobye tochki vektornykh polei na ploskosti”, SOZh, 1999, no. 5, 121–127 | Zbl

[2] V. I. Arnol'd, Yu. S. Il'yashenko, “Ordinary differential equations”, Dynamical systems I, Encyclopaedia Math. Sci., 1, Springer-Verlag, Berlin, 1988, 1–148 | MR | Zbl

[3] Yu. S. Il'yashenko, Finiteness theorems for limit cycles, Transl. from the Russian, Transl. Math. Monogr., 94, Amer. Math. Soc., Providence, RI, 1991, x+288 pp. | MR | Zbl

[4] N. B. Medvedeva, “On the analytic solvability of the problem of distinguishing between center and focus”, Proc. Steklov Inst. Math., 254 (2006), 7–93 | DOI | MR | Zbl

[5] V. I. Arnol'd, “Local problems of analysis”, Moscow Univ. Math. Bull., 25(1970):1-2 (1972), 77–80 | MR | Zbl

[6] Yu. S. Il'yashenko, “Algebraically and analytically solvable local problems of the theory of ordinary differential equations”, J. Soviet Math., 47:3 (1989), 2570–2584 | DOI | MR | Zbl

[7] F. Dumortier, “Singularities of vector fields on the plane”, J. Differential Equations, 23:1 (1977), 53–106 | DOI | MR | Zbl

[8] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M.–L., 1947, 392 pp.; H. Poincaré, “Sur les courbes définies par les équations différentielles”, C. R. Acad. Sci. Paris, XCIII, XCVIII (1882, 1884), 951–952, 287–289 ; J. Math. Pures Appl. (4), I, II (1885, 1886), 167–244, 151–211 | Zbl | Zbl

[9] A. M. Lyapunov, The general problem of the stability of motion, Taylor Francis Group, London, 1992, x+270 pp. | MR | MR | Zbl | Zbl

[10] A. M. Lyapunov, “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya”, Obschaya zadacha ob ustoichivosti dvizheniya, GTTI, M.–L., 1950, 369–449 | MR | Zbl

[11] R. Moussu, “Symmétrie et forme normale des centres et foyers dégénérés”, Ergodic Theory Dynam. Systems, 2:2 (1982), 241–251 | DOI | MR | Zbl

[12] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl

[13] A. D. Bruno, Local methods in nonlinear differential equations, Part I. The local method of nonlinear analysis of differential equations. Part II. The sets of analyticity of a normalizing transformation, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1989, x+348 pp. | MR | MR | Zbl | Zbl

[14] V. P. Varin, “Poincaré map for some polynomial systems of differential equations”, Sb. Math., 195:7 (2004), 917–934 | DOI | DOI | MR | Zbl

[15] Yu. S. Ilyashenko, “Algebraic nonsolvability and almost algebraic solvability of the centerfocus problem”, Funct. Anal. Appl., 6:3 (1972), 197–202 | DOI | MR | Zbl

[16] Yu. S. Ilyashenko, “Dulac's memoir “On limit cycles” and related problems of the local theory of differential equations”, Russian Math. Surveys, 40:6 (1985), 1–49 | DOI | MR | Zbl

[17] H. Dulac, “Sur les cycles limites”, Bull. Soc. Math. France, 51 (1923), 45–188 | DOI | MR | MR | Zbl | Zbl

[18] N. B. Medvedeva, “Principal term of the monodromy transformation of a monodromic singular point is linear”, Siberian Math. J., 33:2 (1992), 280–288 | DOI | MR | Zbl

[19] N. B. Medvedeva, E. V. Mazaeva, “A sufficient condition for a focus for a monodromic singular point”, Trans. Moscow Math. Soc., 2002 (2003), 77–103 | MR | Zbl

[20] N. B. Medvedeva, “The principal term of the asymptotic expansion of the monodromy transformation: computation in blow-up geometry”, Siberian Math. J., 38:1 (1997), 114–126 | DOI | MR | Zbl

[21] A. S. Voronin, N. B. Medvedeva, “Ustoichivost monodromnykh osobykh tochek s fiksirovannoi diagrammoi Nyutona”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2009, no. 3, 34–49

[22] A. S. Voronin, N. B. Medvedeva, “Asimptotika preobrazovaniya monodromii v sluchae dvukh chetnykh reber diagrammy Nyutona”, Vestnik ChelGU, 2011, no. 14, 12–26 | MR

[23] A. S. Voronin, N. B. Medvedeva, “Asymptotics of the monodromy transformation in certain classes of monodromy germs”, Izv. Math., 77:2 (2013), 253–270 | DOI | DOI | MR | Zbl

[24] N. B. Medvedeva, “On analytic insolubility of the stability problem on the plane”, Russian Math. Surveys, 68:5 (2013), 923–949 | DOI | DOI | MR | Zbl

[25] F. S. Berezovskaya, N. B. Medvedeva, “The asymptotics of the return map of a singular point with fixed Newton diagram”, J. Soviet Math., 60:6 (1992), 1765–1781 | DOI | MR | Zbl

[26] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932, 542 pp. | MR | Zbl

[27] N. B. Medvedeva, “Asimptoticheskoe razlozhenie preobrazovaniya monodromii”, Chelyab. fiz.-matem. zhurn., 1:1 (2016), 56–72 | MR

[28] N. B. Medvedeva, “A monodromy criterion for a singular point of a vector field on the plane”, St. Petersburg Math. J., 13:2 (2002), 253–268 | MR | Zbl

[29] D. N. Cherginets, “Funktsiya sootvetstviya dlya sistem s prostym sedlom”, Vestnik BGU. Ser. 1. Fizika. Matematika. Informatika, 2008, no. 1, 71–76 | MR

[30] N. B. Medvedeva, V. A. Viktorova, “Priblizhennoe vychislenie integralov Adamara spetsialnogo vida”, Chelyab. fiz.-matem. zhurn., 4:4 (2019), 398–411 | DOI | MR