Mots-clés : monodromic singular point, monodromy transformation, transition map.
@article{SM_2020_211_10_a2,
author = {N. B. Medvedeva},
title = {The problem of distinguishing between a~centre and a~focus in the space of vector fields with given {Newton} diagram},
journal = {Sbornik. Mathematics},
pages = {1399--1446},
year = {2020},
volume = {211},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a2/}
}
TY - JOUR AU - N. B. Medvedeva TI - The problem of distinguishing between a centre and a focus in the space of vector fields with given Newton diagram JO - Sbornik. Mathematics PY - 2020 SP - 1399 EP - 1446 VL - 211 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2020_211_10_a2/ LA - en ID - SM_2020_211_10_a2 ER -
N. B. Medvedeva. The problem of distinguishing between a centre and a focus in the space of vector fields with given Newton diagram. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1399-1446. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a2/
[1] N. B. Medvedeva, “Osobye tochki vektornykh polei na ploskosti”, SOZh, 1999, no. 5, 121–127 | Zbl
[2] V. I. Arnol'd, Yu. S. Il'yashenko, “Ordinary differential equations”, Dynamical systems I, Encyclopaedia Math. Sci., 1, Springer-Verlag, Berlin, 1988, 1–148 | MR | Zbl
[3] Yu. S. Il'yashenko, Finiteness theorems for limit cycles, Transl. from the Russian, Transl. Math. Monogr., 94, Amer. Math. Soc., Providence, RI, 1991, x+288 pp. | MR | Zbl
[4] N. B. Medvedeva, “On the analytic solvability of the problem of distinguishing between center and focus”, Proc. Steklov Inst. Math., 254 (2006), 7–93 | DOI | MR | Zbl
[5] V. I. Arnol'd, “Local problems of analysis”, Moscow Univ. Math. Bull., 25(1970):1-2 (1972), 77–80 | MR | Zbl
[6] Yu. S. Il'yashenko, “Algebraically and analytically solvable local problems of the theory of ordinary differential equations”, J. Soviet Math., 47:3 (1989), 2570–2584 | DOI | MR | Zbl
[7] F. Dumortier, “Singularities of vector fields on the plane”, J. Differential Equations, 23:1 (1977), 53–106 | DOI | MR | Zbl
[8] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M.–L., 1947, 392 pp.; H. Poincaré, “Sur les courbes définies par les équations différentielles”, C. R. Acad. Sci. Paris, XCIII, XCVIII (1882, 1884), 951–952, 287–289 ; J. Math. Pures Appl. (4), I, II (1885, 1886), 167–244, 151–211 | Zbl | Zbl
[9] A. M. Lyapunov, The general problem of the stability of motion, Taylor Francis Group, London, 1992, x+270 pp. | MR | MR | Zbl | Zbl
[10] A. M. Lyapunov, “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya”, Obschaya zadacha ob ustoichivosti dvizheniya, GTTI, M.–L., 1950, 369–449 | MR | Zbl
[11] R. Moussu, “Symmétrie et forme normale des centres et foyers dégénérés”, Ergodic Theory Dynam. Systems, 2:2 (1982), 241–251 | DOI | MR | Zbl
[12] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl
[13] A. D. Bruno, Local methods in nonlinear differential equations, Part I. The local method of nonlinear analysis of differential equations. Part II. The sets of analyticity of a normalizing transformation, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1989, x+348 pp. | MR | MR | Zbl | Zbl
[14] V. P. Varin, “Poincaré map for some polynomial systems of differential equations”, Sb. Math., 195:7 (2004), 917–934 | DOI | DOI | MR | Zbl
[15] Yu. S. Ilyashenko, “Algebraic nonsolvability and almost algebraic solvability of the centerfocus problem”, Funct. Anal. Appl., 6:3 (1972), 197–202 | DOI | MR | Zbl
[16] Yu. S. Ilyashenko, “Dulac's memoir “On limit cycles” and related problems of the local theory of differential equations”, Russian Math. Surveys, 40:6 (1985), 1–49 | DOI | MR | Zbl
[17] H. Dulac, “Sur les cycles limites”, Bull. Soc. Math. France, 51 (1923), 45–188 | DOI | MR | MR | Zbl | Zbl
[18] N. B. Medvedeva, “Principal term of the monodromy transformation of a monodromic singular point is linear”, Siberian Math. J., 33:2 (1992), 280–288 | DOI | MR | Zbl
[19] N. B. Medvedeva, E. V. Mazaeva, “A sufficient condition for a focus for a monodromic singular point”, Trans. Moscow Math. Soc., 2002 (2003), 77–103 | MR | Zbl
[20] N. B. Medvedeva, “The principal term of the asymptotic expansion of the monodromy transformation: computation in blow-up geometry”, Siberian Math. J., 38:1 (1997), 114–126 | DOI | MR | Zbl
[21] A. S. Voronin, N. B. Medvedeva, “Ustoichivost monodromnykh osobykh tochek s fiksirovannoi diagrammoi Nyutona”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2009, no. 3, 34–49
[22] A. S. Voronin, N. B. Medvedeva, “Asimptotika preobrazovaniya monodromii v sluchae dvukh chetnykh reber diagrammy Nyutona”, Vestnik ChelGU, 2011, no. 14, 12–26 | MR
[23] A. S. Voronin, N. B. Medvedeva, “Asymptotics of the monodromy transformation in certain classes of monodromy germs”, Izv. Math., 77:2 (2013), 253–270 | DOI | DOI | MR | Zbl
[24] N. B. Medvedeva, “On analytic insolubility of the stability problem on the plane”, Russian Math. Surveys, 68:5 (2013), 923–949 | DOI | DOI | MR | Zbl
[25] F. S. Berezovskaya, N. B. Medvedeva, “The asymptotics of the return map of a singular point with fixed Newton diagram”, J. Soviet Math., 60:6 (1992), 1765–1781 | DOI | MR | Zbl
[26] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932, 542 pp. | MR | Zbl
[27] N. B. Medvedeva, “Asimptoticheskoe razlozhenie preobrazovaniya monodromii”, Chelyab. fiz.-matem. zhurn., 1:1 (2016), 56–72 | MR
[28] N. B. Medvedeva, “A monodromy criterion for a singular point of a vector field on the plane”, St. Petersburg Math. J., 13:2 (2002), 253–268 | MR | Zbl
[29] D. N. Cherginets, “Funktsiya sootvetstviya dlya sistem s prostym sedlom”, Vestnik BGU. Ser. 1. Fizika. Matematika. Informatika, 2008, no. 1, 71–76 | MR
[30] N. B. Medvedeva, V. A. Viktorova, “Priblizhennoe vychislenie integralov Adamara spetsialnogo vida”, Chelyab. fiz.-matem. zhurn., 4:4 (2019), 398–411 | DOI | MR