Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric
Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1382-1398

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry of the metric space of compact subsets of $\mathbb R^n$ considered up to an orientation-preserving motion. We show that, in the optimal position of a pair of compact sets (for which the Hausdorff distance between the sets cannot be decreased), one of which is a singleton, this point is at the Chebyshev centre of the other. For orientedly similar compacta we evaluate the Euclidean Gromov-Hausdorff distance between them and prove that, in the optimal position, the Chebyshev centres of these compacta coincide. We show that every three-point metric space can be embedded isometrically in the space of compacta under consideration. We prove that, for a pair of optimally positioned compacta all compacta that lie in between in the sense of the Hausdorff metric also lie in between in the sense of the Euclidean Gromov-Hausdorff metric. For an arbitrary $n$-point boundary formed by compact sets of a set $\mathscr X$ that are neighbourhoods of segments, the Steiner point realizes the minimal filling and also belongs to the set $\mathscr X$. Bibliography: 14 titles.
Keywords: Steiner point, Euclidean Gromov-Hausdorff metric
Mots-clés : optimal position of compacta.
@article{SM_2020_211_10_a1,
     author = {O. S. Malysheva},
     title = {Optimal position of compact sets and the {Steiner} problem in spaces with {Euclidean} {Gromov-Hausdorff} metric},
     journal = {Sbornik. Mathematics},
     pages = {1382--1398},
     publisher = {mathdoc},
     volume = {211},
     number = {10},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/}
}
TY  - JOUR
AU  - O. S. Malysheva
TI  - Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1382
EP  - 1398
VL  - 211
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/
LA  - en
ID  - SM_2020_211_10_a1
ER  - 
%0 Journal Article
%A O. S. Malysheva
%T Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric
%J Sbornik. Mathematics
%D 2020
%P 1382-1398
%V 211
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/
%G en
%F SM_2020_211_10_a1
O. S. Malysheva. Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1382-1398. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/