Mots-clés : optimal position of compacta.
@article{SM_2020_211_10_a1,
author = {O. S. Malysheva},
title = {Optimal position of compact sets and the {Steiner} problem in spaces with {Euclidean} {Gromov-Hausdorff} metric},
journal = {Sbornik. Mathematics},
pages = {1382--1398},
year = {2020},
volume = {211},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/}
}
TY - JOUR AU - O. S. Malysheva TI - Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric JO - Sbornik. Mathematics PY - 2020 SP - 1382 EP - 1398 VL - 211 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/ LA - en ID - SM_2020_211_10_a1 ER -
O. S. Malysheva. Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1382-1398. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/
[1] D. Edwards, “The structure of superspace”, Studies in topology (Univ. North Carolina, Charlotte, NC, 1974), Academic Press, New York, 1975, 121–133 | MR | Zbl
[2] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–73 | DOI | MR | Zbl
[3] F. Memoli, “Gromov–Hausdorff distances in Euclidean spaces”, 2008 IEEE computer society conference on computer vision and pattern recognition workshops (Anchorage, AK, 2008), IEEE, 2008, 1–8 | DOI
[4] A. D. Kislovskaya, Geometriya konfiguratsii v prostranstvakh s evklidovo invariantnoi metrikoi tipa Gromova–Khausdorfa, Diplomnaya rabota, MGU, M., 2013
[5] K. Lund, S. Schlicker, P. Sigmon, “Fibonacci sequences and the space of compact sets”, Involve, 1:2 (2008), 197–215 | DOI | MR | Zbl
[6] A. L. Kazakov, P. D. Lebedev, “Postroenie nailuchshikh krugovykh approksimatsii mnozhestv na ploskosti i na sfere”, XII Vserossiiskoe soveschanie po problemam upravleniya VSPU-2014, IPU RAN, M., 2014, 1575–1586
[7] E. N. Sosov, Geometrii vypuklykh i konechnykh mnozhestv geodezicheskogo prostranstva, Diss. ... dokt. fiz.-matem. nauk, Kazan. gos. un-t, Kazan, 2010, 256 pp.
[8] A. O. Ivanov, N. K. Nikolaeva, A. A. Tuzhilin, “Steiner problem in the Gromov–Hausdorff space: the case of finite metric spaces”, Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S88–S96 | DOI | DOI | MR | Zbl
[9] D. Burago, Yu. Burago, S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl
[10] A. L. Garkavi, “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6(120) (1964), 139–145 | MR | Zbl
[11] A. O. Ivanov, A. A. Tuzhilin, “One-dimensional Gromov minimal filling problem”, Sb. Math., 203:5 (2012), 677–726 | DOI | DOI | MR | Zbl
[12] S. Iliadis, A. O. Ivanov, A. A. Tuzhilin, “Local structure of Gromov–Hausdorff space, and isometric embeddings of finite metric spaces into this space”, Topology Appl., 221 (2017), 393–398 | DOI | MR | Zbl
[13] H. Busemann, The geometry of geodesics, Pure Appl. Math., 6, Academic Press Inc., New York, N.Y., 1955, x+422 pp. | MR | MR | Zbl | Zbl
[14] A. O. Ivanov, A. A. Tuzhilin, Gromov–Hausdorff distance, irreducible correspondences, Steiner problem, and minimal fillings, arXiv: 1604.06116