Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric
Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1382-1398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the geometry of the metric space of compact subsets of $\mathbb R^n$ considered up to an orientation-preserving motion. We show that, in the optimal position of a pair of compact sets (for which the Hausdorff distance between the sets cannot be decreased), one of which is a singleton, this point is at the Chebyshev centre of the other. For orientedly similar compacta we evaluate the Euclidean Gromov-Hausdorff distance between them and prove that, in the optimal position, the Chebyshev centres of these compacta coincide. We show that every three-point metric space can be embedded isometrically in the space of compacta under consideration. We prove that, for a pair of optimally positioned compacta all compacta that lie in between in the sense of the Hausdorff metric also lie in between in the sense of the Euclidean Gromov-Hausdorff metric. For an arbitrary $n$-point boundary formed by compact sets of a set $\mathscr X$ that are neighbourhoods of segments, the Steiner point realizes the minimal filling and also belongs to the set $\mathscr X$. Bibliography: 14 titles.
Keywords: Steiner point, Euclidean Gromov-Hausdorff metric
Mots-clés : optimal position of compacta.
@article{SM_2020_211_10_a1,
     author = {O. S. Malysheva},
     title = {Optimal position of compact sets and the {Steiner} problem in spaces with {Euclidean} {Gromov-Hausdorff} metric},
     journal = {Sbornik. Mathematics},
     pages = {1382--1398},
     year = {2020},
     volume = {211},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/}
}
TY  - JOUR
AU  - O. S. Malysheva
TI  - Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1382
EP  - 1398
VL  - 211
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/
LA  - en
ID  - SM_2020_211_10_a1
ER  - 
%0 Journal Article
%A O. S. Malysheva
%T Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric
%J Sbornik. Mathematics
%D 2020
%P 1382-1398
%V 211
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/
%G en
%F SM_2020_211_10_a1
O. S. Malysheva. Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1382-1398. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a1/

[1] D. Edwards, “The structure of superspace”, Studies in topology (Univ. North Carolina, Charlotte, NC, 1974), Academic Press, New York, 1975, 121–133 | MR | Zbl

[2] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–73 | DOI | MR | Zbl

[3] F. Memoli, “Gromov–Hausdorff distances in Euclidean spaces”, 2008 IEEE computer society conference on computer vision and pattern recognition workshops (Anchorage, AK, 2008), IEEE, 2008, 1–8 | DOI

[4] A. D. Kislovskaya, Geometriya konfiguratsii v prostranstvakh s evklidovo invariantnoi metrikoi tipa Gromova–Khausdorfa, Diplomnaya rabota, MGU, M., 2013

[5] K. Lund, S. Schlicker, P. Sigmon, “Fibonacci sequences and the space of compact sets”, Involve, 1:2 (2008), 197–215 | DOI | MR | Zbl

[6] A. L. Kazakov, P. D. Lebedev, “Postroenie nailuchshikh krugovykh approksimatsii mnozhestv na ploskosti i na sfere”, XII Vserossiiskoe soveschanie po problemam upravleniya VSPU-2014, IPU RAN, M., 2014, 1575–1586

[7] E. N. Sosov, Geometrii vypuklykh i konechnykh mnozhestv geodezicheskogo prostranstva, Diss. ... dokt. fiz.-matem. nauk, Kazan. gos. un-t, Kazan, 2010, 256 pp.

[8] A. O. Ivanov, N. K. Nikolaeva, A. A. Tuzhilin, “Steiner problem in the Gromov–Hausdorff space: the case of finite metric spaces”, Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S88–S96 | DOI | DOI | MR | Zbl

[9] D. Burago, Yu. Burago, S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl

[10] A. L. Garkavi, “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6(120) (1964), 139–145 | MR | Zbl

[11] A. O. Ivanov, A. A. Tuzhilin, “One-dimensional Gromov minimal filling problem”, Sb. Math., 203:5 (2012), 677–726 | DOI | DOI | MR | Zbl

[12] S. Iliadis, A. O. Ivanov, A. A. Tuzhilin, “Local structure of Gromov–Hausdorff space, and isometric embeddings of finite metric spaces into this space”, Topology Appl., 221 (2017), 393–398 | DOI | MR | Zbl

[13] H. Busemann, The geometry of geodesics, Pure Appl. Math., 6, Academic Press Inc., New York, N.Y., 1955, x+422 pp. | MR | MR | Zbl | Zbl

[14] A. O. Ivanov, A. A. Tuzhilin, Gromov–Hausdorff distance, irreducible correspondences, Steiner problem, and minimal fillings, arXiv: 1604.06116