@article{SM_2020_211_10_a0,
author = {Vik. S. Kulikov},
title = {On rigid germs of finite morphisms of smooth surfaces},
journal = {Sbornik. Mathematics},
pages = {1354--1381},
year = {2020},
volume = {211},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a0/}
}
Vik. S. Kulikov. On rigid germs of finite morphisms of smooth surfaces. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1354-1381. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a0/
[1] V. I. Arnol'd, “Normal forms for functions near degenerate critical points, the Weyl groups of $A_k$, $D_k$, $E_k$ and Lagrangian singularities”, Funct. Anal. Appl., 6:4 (1972), 254–272 | DOI | MR | Zbl
[2] W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, Berlin, 1984, x+304 pp. | DOI | MR | Zbl
[3] G. V. Belyi, “On Galois extensions of a maximal cyclotomic field”, Math. USSR-Izv., 14:2 (1980), 247–256 | DOI | MR | Zbl
[4] H. Grauert, R. Remmert, “Komplexe Räume”, Math. Ann., 136 (1958), 245–318 | DOI | MR | Zbl
[5] Vik. S. Kulikov, “Dualizing coverings of the plane”, Izv. Math., 79:5 (2015), 1013–1042 | DOI | DOI | MR | Zbl
[6] D. Mumford, “The topology of normal singularities of an algebraic surface and a criterion for simplicity”, Inst. Hautes Études Sci. Publ. Math., 9 (1961), 5–22 | DOI | MR | Zbl
[7] I. R. Shafarevich, Basic algebraic geometry, Grundlehren Math. Wiss., 213, Springer-Verlag, New York–Heidelberg, 1974, xv+439 pp. | MR | MR | Zbl | Zbl
[8] I. R. S̆afarevic̆, B. G. Averbuh, Ju. R. Vaĭnberg, A. B. Z̆iz̆c̆enko, Ju. I. Manin, B. G. Moĭs̆ezon, G. N. Tjurina, A. N. Tjurin, “Algebraic surfaces”, Proc. Steklov Inst. Math., 75 (1965), 1–281 | MR | MR | Zbl
[9] J. M. Wahl, “Equisingular deformations of plane algebroid curves”, Trans. Amer. Math. Soc., 193 (1974), 143–170 | DOI | MR | Zbl
[10] O. Zariski, “Studies in equisingularity. I. Equivalent singularities of plane algebroid curves”, Amer. J. Math., 87:2 (1965), 507–536 | DOI | MR | Zbl