On rigid germs of finite morphisms of smooth surfaces
Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1354-1381

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we show that the germ of a finite morphism of smooth surfaces is rigid if and only if the germ of its branch curve has an $ADE$ singularity type. We establish a correspondence between the set of rigid germs of finite morphisms and the set of Belyi rational functions $f\in\overline{\mathbb Q}(z)$. Bibliography: 10 titles.
Keywords: rigid germs of finite morphisms, Belyi functions.
@article{SM_2020_211_10_a0,
     author = {Vik. S. Kulikov},
     title = {On rigid germs of finite morphisms of smooth surfaces},
     journal = {Sbornik. Mathematics},
     pages = {1354--1381},
     publisher = {mathdoc},
     volume = {211},
     number = {10},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a0/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On rigid germs of finite morphisms of smooth surfaces
JO  - Sbornik. Mathematics
PY  - 2020
SP  - 1354
EP  - 1381
VL  - 211
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2020_211_10_a0/
LA  - en
ID  - SM_2020_211_10_a0
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On rigid germs of finite morphisms of smooth surfaces
%J Sbornik. Mathematics
%D 2020
%P 1354-1381
%V 211
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2020_211_10_a0/
%G en
%F SM_2020_211_10_a0
Vik. S. Kulikov. On rigid germs of finite morphisms of smooth surfaces. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1354-1381. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a0/