On rigid germs of finite morphisms of smooth surfaces
Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1354-1381
Voir la notice de l'article provenant de la source Math-Net.Ru
In the article, we show that the germ of a finite morphism of smooth surfaces is rigid if and only if the germ of its branch curve has an $ADE$ singularity type. We establish a correspondence between the set of rigid germs of finite morphisms and the set of Belyi rational functions $f\in\overline{\mathbb Q}(z)$.
Bibliography: 10 titles.
Keywords:
rigid germs of finite morphisms, Belyi functions.
@article{SM_2020_211_10_a0,
author = {Vik. S. Kulikov},
title = {On rigid germs of finite morphisms of smooth surfaces},
journal = {Sbornik. Mathematics},
pages = {1354--1381},
publisher = {mathdoc},
volume = {211},
number = {10},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2020_211_10_a0/}
}
Vik. S. Kulikov. On rigid germs of finite morphisms of smooth surfaces. Sbornik. Mathematics, Tome 211 (2020) no. 10, pp. 1354-1381. http://geodesic.mathdoc.fr/item/SM_2020_211_10_a0/