Weakly monotone sets and continuous selection in asymmetric spaces
Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1326-1347 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sets admitting a continuous selection from the set of near best approximations are studied. Applications of the geometric theory of approximation to the existence of continuous selections for the sets of $n$-link piecewise linear functions, $n$-link piecewise polynomial functions and generalizations thereof are also discussed. Bibliography: 23 titles.
Keywords: continuous selection, sun, fixed point.
@article{SM_2019_210_9_a5,
     author = {I. G. Tsar'kov},
     title = {Weakly monotone sets and continuous selection in asymmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {1326--1347},
     year = {2019},
     volume = {210},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_9_a5/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Weakly monotone sets and continuous selection in asymmetric spaces
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1326
EP  - 1347
VL  - 210
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_9_a5/
LA  - en
ID  - SM_2019_210_9_a5
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Weakly monotone sets and continuous selection in asymmetric spaces
%J Sbornik. Mathematics
%D 2019
%P 1326-1347
%V 210
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2019_210_9_a5/
%G en
%F SM_2019_210_9_a5
I. G. Tsar'kov. Weakly monotone sets and continuous selection in asymmetric spaces. Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1326-1347. http://geodesic.mathdoc.fr/item/SM_2019_210_9_a5/

[1] I. G. Tsar'kov, “Continuous selections in asymmetric spaces”, Sb. Math., 209:4 (2018), 560–579 | DOI | DOI | MR | Zbl

[2] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Math. Notes, 40:2 (1986), 597–610 | DOI | MR | Zbl

[3] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[4] I. G. Tsar'kov, “Properties of the sets that have a continuous selection from the operator $P^\delta$”, Math. Notes, 48:4 (1990), 1052–1058 | DOI | MR | Zbl

[5] I. G. Tsar'kov, “Properties of sets admitting stable $\varepsilon$-selections”, Math. Notes, 89:4 (2011), 572–576 | DOI | DOI | MR | Zbl

[6] K. S. Ryutin, “Uniform continuity of generalized rational approximations”, Math. Notes, 71:2 (2002), 236–244 | DOI | DOI | MR | Zbl

[7] E. D. Livshits, “On almost-best approximation by piecewise polynomial functions in the space $C[0,1]$”, Math. Notes, 78:4 (2005), 586–591 | DOI | DOI | MR | Zbl

[8] E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. Math., 67:1 (2003), 91–119 | DOI | DOI | MR | Zbl

[9] E. D. Livshits, “Continuous selections of operators of almost best approximation by splines in the space $L_p[0,1]$. I”, Russ. J. Math. Phys., 12:2 (2005), 215–218 | MR | Zbl

[10] K. S. Ryutin, “Continuity of operators of generalized rational approximation in the space $L_1[0;1]$”, Math. Notes, 73:1 (2003), 142–147 | DOI | DOI | MR | Zbl

[11] A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci. (N. Y.), 217:6 (2016), 683–730 | DOI | MR | Zbl

[12] A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sb. Math., 197:9 (2006), 1259–1272 | DOI | DOI | MR | Zbl

[13] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl

[14] I. G. Tsar'kov, “Continuous $\varepsilon$-selection”, Sb. Math., 207:2 (2016), 267–285 | DOI | DOI | MR | Zbl

[15] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655 | DOI | DOI | MR | Zbl

[16] I. G. Tsar'kov, “Local and global continuous $\varepsilon$-selection”, Izv. Math., 80:2 (2016), 442–461 | DOI | DOI | MR | Zbl

[17] I. G. Tsar'kov, “Continuous selection from the sets of best and near-best approximation”, Dokl. Math., 96:1 (2017), 362–364 | DOI | DOI | MR | Zbl

[18] I. G. Tsar'kov, “Continuous selection for set-valued mappings”, Izv. Math., 81:3 (2017), 645–669 | DOI | DOI | MR | Zbl

[19] I. G. Tsarkov, “Mnozhestva, obladayuschie nepreryvnoi vyborkoi iz operatora pochti nailuchshego priblizheniya”, Sovremennye problemy matematiki i mekhaniki, 9, no. 2, Izd-vo Mosk. un-ta, M., 2014, 54–58

[20] I. G. Tsarkov, “Nekotorye prilozheniya geometricheskoi teorii priblizheniya”, Differentsialnye uravneniya. Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 143, VINITI RAN, M., 2017, 63–80 | MR

[21] A. L. Brown, “On the connectedness properties of suns in finite dimensional spaces”, Functional analysis and optimization (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl

[22] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl

[23] I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. Math., 82:4 (2018), 837–859 | DOI | DOI | MR | Zbl