Local existence conditions for sweeping process solutions
Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1305-1325

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition for the existence of an absolutely continuous solution for a sweeping process is given by the absolute continuity, in a definite sense, of the multivalued mapping which generates the process. This property is described in terms of the Hausdorff distance between values of the multivalued mapping. However, there exist multivalued mappings for which the Hausdorff distance between those values is infinite; for instance, mappings which take hyperplanes as values. For such mappings absolute continuity cannot be described in terms of the Hausdorff distance. In this paper we study conditions which provide local absolute continuity of a multivalued mapping. By using these conditions we prove an existence theorem for an absolutely continuous solution of a sweeping process. We apply the results obtained to the study of sweeping processes with nonconvex and with convexified perturbations. For such sweeping processes we prove an existence theorem for solutions and a relaxation theorem. Bibliography: 13 titles.
Keywords: sweeping process, local Hausdorff distance, nonconvex multivalued perturbation.
Mots-clés : existence of solutions
@article{SM_2019_210_9_a4,
     author = {A. A. Tolstonogov},
     title = {Local existence conditions for sweeping process solutions},
     journal = {Sbornik. Mathematics},
     pages = {1305--1325},
     publisher = {mathdoc},
     volume = {210},
     number = {9},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_9_a4/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Local existence conditions for sweeping process solutions
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1305
EP  - 1325
VL  - 210
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_9_a4/
LA  - en
ID  - SM_2019_210_9_a4
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Local existence conditions for sweeping process solutions
%J Sbornik. Mathematics
%D 2019
%P 1305-1325
%V 210
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_9_a4/
%G en
%F SM_2019_210_9_a4
A. A. Tolstonogov. Local existence conditions for sweeping process solutions. Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1305-1325. http://geodesic.mathdoc.fr/item/SM_2019_210_9_a4/