Mots-clés : existence of solutions
@article{SM_2019_210_9_a4,
author = {A. A. Tolstonogov},
title = {Local existence conditions for sweeping process solutions},
journal = {Sbornik. Mathematics},
pages = {1305--1325},
year = {2019},
volume = {210},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_9_a4/}
}
A. A. Tolstonogov. Local existence conditions for sweeping process solutions. Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1305-1325. http://geodesic.mathdoc.fr/item/SM_2019_210_9_a4/
[1] J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984, xiii+342 pp. | DOI | MR | Zbl
[2] J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374 | DOI | MR | Zbl
[3] A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301 | DOI | MR | Zbl
[4] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | DOI | MR | Zbl
[5] H. Attouch, R. J.-B. Wets, “Quantitative stability of variational systems. I. The epigraphical distance”, Trans. Amer. Math. Soc., 328:2 (1991), 695–729 | DOI | MR | Zbl
[6] A. A. Tolstonogov, “Relaxation in nonconvex optimal control problems containing the difference of two subdifferentials”, SIAM J. Control Optim., 54:1 (2016), 175–197 | DOI | MR | Zbl
[7] I. Ekeland, R. Temam, Convex analysis and variational problems, Stud. Math. Appl., 1, North-Holland Publishing Co., Amsterdam–Oxford; American Elsevier Publishing Co., Inc., New York, 1976, ix+402 pp. | MR | MR | Zbl | Zbl
[8] A. A. Tolstonogov, “Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation”, J. Math. Anal. Appl., 447:1 (2017), 269–288 | DOI | MR | Zbl
[9] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat. (50), North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp. | MR | Zbl
[10] M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction, Progr. Nonlinear Differential Equations Appl., 9, Burkhäuser Verlag, Basel, 1993, x+179 pp. | DOI | MR | Zbl
[11] F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182 | DOI | MR | Zbl
[12] A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: relaxation theorems”, Set-Valued Anal., 4:3 (1996), 237–269 | DOI | MR | Zbl
[13] A. F. Filippov, “Classical solutions of differential equations with multi-valued right-hand side”, SIAM J. Control, 5 (1967), 609–621 | DOI | MR | MR | Zbl