Algebras of free holomorphic functions and localizations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1288-1304
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the algebras of holomorphic functions on a free polydisc $\mathscr F^T(\mathbb D_R^n)$, $\mathscr F(\mathbb D_R^n)$ and the algebra of holomorphic functions on a free ball $\mathscr F(\mathbb B_r^n)$. We show that the algebra $\mathscr F(\mathbb D_R^n)$ is a localization of a free algebra and, moreover, is a free analytic algebra with $n$ generators (in the sense of J. Taylor), while the algebra $\mathscr F(\mathbb B_r^n)$ is not a localization of a free algebra. In addition we prove that the class of localizations of free algebras and the class of free analytic algebras are closed under the operation of the Arens-Michael free product. 
Bibliography: 21 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
localization, free analytic algebra, Arens-Michael free product, algebra of holomorphic functions on a free polydisc, algebra of holomorphic functions on a free ball.
                    
                    
                    
                  
                
                
                @article{SM_2019_210_9_a3,
     author = {K. A. Syrtseva},
     title = {Algebras of free holomorphic functions and localizations},
     journal = {Sbornik. Mathematics},
     pages = {1288--1304},
     publisher = {mathdoc},
     volume = {210},
     number = {9},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_9_a3/}
}
                      
                      
                    K. A. Syrtseva. Algebras of free holomorphic functions and localizations. Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1288-1304. http://geodesic.mathdoc.fr/item/SM_2019_210_9_a3/
