Algebras of free holomorphic functions and localizations
Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1288-1304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the algebras of holomorphic functions on a free polydisc $\mathscr F^T(\mathbb D_R^n)$, $\mathscr F(\mathbb D_R^n)$ and the algebra of holomorphic functions on a free ball $\mathscr F(\mathbb B_r^n)$. We show that the algebra $\mathscr F(\mathbb D_R^n)$ is a localization of a free algebra and, moreover, is a free analytic algebra with $n$ generators (in the sense of J. Taylor), while the algebra $\mathscr F(\mathbb B_r^n)$ is not a localization of a free algebra. In addition we prove that the class of localizations of free algebras and the class of free analytic algebras are closed under the operation of the Arens-Michael free product. Bibliography: 21 titles.
Keywords: localization, free analytic algebra, Arens-Michael free product, algebra of holomorphic functions on a free polydisc, algebra of holomorphic functions on a free ball.
@article{SM_2019_210_9_a3,
     author = {K. A. Syrtseva},
     title = {Algebras of free holomorphic functions and localizations},
     journal = {Sbornik. Mathematics},
     pages = {1288--1304},
     year = {2019},
     volume = {210},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_9_a3/}
}
TY  - JOUR
AU  - K. A. Syrtseva
TI  - Algebras of free holomorphic functions and localizations
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1288
EP  - 1304
VL  - 210
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_9_a3/
LA  - en
ID  - SM_2019_210_9_a3
ER  - 
%0 Journal Article
%A K. A. Syrtseva
%T Algebras of free holomorphic functions and localizations
%J Sbornik. Mathematics
%D 2019
%P 1288-1304
%V 210
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2019_210_9_a3/
%G en
%F SM_2019_210_9_a3
K. A. Syrtseva. Algebras of free holomorphic functions and localizations. Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1288-1304. http://geodesic.mathdoc.fr/item/SM_2019_210_9_a3/

[1] J. L. Taylor, “A general framework for a multi-operator functional calculus”, Advances in Math., 9:2 (1972), 183–252 | DOI | MR | Zbl

[2] J. L. Taylor, “Functions of several noncommuting variables”, Bull. Amer. Math. Soc., 79 (1973), 1–34 | DOI | MR | Zbl

[3] W. Dicks, “Mayer–Vietoris presentations over colimits of rings”, Proc. London Math. Soc. (3), 34:3 (1977), 557–576 | DOI | MR | Zbl

[4] W. Geigle, H. Lenzing, “Perpendicular categories with applications to representations and sheaves”, J. Algebra, 144:2 (1991), 273–343 | DOI | MR | Zbl

[5] A. Neeman, A. Ranicki, Noncommutative localization and chain complexes. I. Algebraic K- and L-theory, arXiv: math/0109118v1

[6] R. Meyer, Embeddings of derived categories of bornological modules, 2004, arXiv: math/0410596

[7] D. S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov, Foundations of free noncommutative function theory, Math. Surveys Monogr., 199, Amer. Math. Soc., Providence, RI, 2014, vi+183 pp. | DOI | MR | Zbl

[8] A. Yu. Pirkovskii, “Holomorphically finitely generated algebras”, J. Noncommut. Geom., 9:1 (2015), 215–264 | DOI | MR | Zbl

[9] A. Yu. Pirkovskii, Quantized algebras of holomorphic functions on the polydisk and on the ball, 2015, arXiv: 1508.05768

[10] G. Popescu, “Free holomorphic functions on the unit ball of $B(\mathscr{H})^n$”, J. Funct. Anal., 241:1 (2006), 268–333 | DOI | MR | Zbl

[11] J. L. Taylor, “Homology and cohomology for topological algebras”, Advances in Math., 9:2 (1972), 137–182 | DOI | MR | Zbl

[12] A. Ya. Helemskii, “Homology for the algebras of analysis”, Handbook of algebra, v. 2, Elsevier/North-Holland, Amsterdam, 2000, 151–274 | DOI | MR | Zbl

[13] H. H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier–Macmillan Ltd., London, 1966, ix+294 pp. | MR | MR | Zbl | Zbl

[14] A. Yu. Pirkovskii, “Arens–Michael envelopes, homological epimorphisms, and relatively quasi-free algebras”, Trans. Moscow Math. Soc., 2008, 27–104 | DOI | MR | Zbl

[15] P. Bonneau, M. Flato, M. Gerstenhaber, G. Pinczon, “The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations”, Comm. Math. Phys., 161:1 (1994), 125–156 | DOI | MR | Zbl

[16] A. P. Robertson, W. J. Robertson, Topological vector spaces, Cambridge Tracts in Math. and Math. Phys., 53, Cambridge Univ. Press, New York, 1964, viii+158 pp. | MR | MR | Zbl | Zbl

[17] J. Cuntz, “Cyclic theory and the bivariant Chern–Connes character”, Noncommutative geometry, Lecture Notes in Math., 1831, Fond. CIME/CIME Found. Subser., Springer, Berlin, 2004, 73–135 | DOI | MR | Zbl

[18] A. Nica, R. Speicher, Lectures on the combinatorics of free probability, London Math. Soc. Lecture Note Ser., 335, Cambridge Univ. Press, Cambridge, 2006, xvi+417 pp. | DOI | MR | Zbl

[19] A. Ya. Helemskii, Banach and locally convex algebras, Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York, 1993, xvi+446 pp. | MR | MR | Zbl | Zbl

[20] A. Yu. Pirkovskii, “Biprojective topological algebras of homological bidimension $1$”, J. Math. Sci. (N. Y.), 111:2 (2002), 3476–3495 | DOI | MR | Zbl

[21] A. Ya. Helemskii, Lectures and exercises on functional analysis, Transl. Math. Monogr., 233, Amer. Math. Soc., Providence, RI, 2006, xviii+468 pp. | MR | Zbl