Algebras of free holomorphic functions and localizations
Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1288-1304

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the algebras of holomorphic functions on a free polydisc $\mathscr F^T(\mathbb D_R^n)$, $\mathscr F(\mathbb D_R^n)$ and the algebra of holomorphic functions on a free ball $\mathscr F(\mathbb B_r^n)$. We show that the algebra $\mathscr F(\mathbb D_R^n)$ is a localization of a free algebra and, moreover, is a free analytic algebra with $n$ generators (in the sense of J. Taylor), while the algebra $\mathscr F(\mathbb B_r^n)$ is not a localization of a free algebra. In addition we prove that the class of localizations of free algebras and the class of free analytic algebras are closed under the operation of the Arens-Michael free product. Bibliography: 21 titles.
Keywords: localization, free analytic algebra, Arens-Michael free product, algebra of holomorphic functions on a free polydisc, algebra of holomorphic functions on a free ball.
@article{SM_2019_210_9_a3,
     author = {K. A. Syrtseva},
     title = {Algebras of free holomorphic functions and localizations},
     journal = {Sbornik. Mathematics},
     pages = {1288--1304},
     publisher = {mathdoc},
     volume = {210},
     number = {9},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_9_a3/}
}
TY  - JOUR
AU  - K. A. Syrtseva
TI  - Algebras of free holomorphic functions and localizations
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1288
EP  - 1304
VL  - 210
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_9_a3/
LA  - en
ID  - SM_2019_210_9_a3
ER  - 
%0 Journal Article
%A K. A. Syrtseva
%T Algebras of free holomorphic functions and localizations
%J Sbornik. Mathematics
%D 2019
%P 1288-1304
%V 210
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_9_a3/
%G en
%F SM_2019_210_9_a3
K. A. Syrtseva. Algebras of free holomorphic functions and localizations. Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1288-1304. http://geodesic.mathdoc.fr/item/SM_2019_210_9_a3/