Higher colimits, derived functors and homology
Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1222-1258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a theory of higher colimits over categories of free presentations. We show that different homology functors such as Hochschild and cyclic homology of algebras over a field of characteristic zero, simplicial derived functors, and group homology can be obtained as higher colimits of simply defined functors. Connes' exact sequence linking Hochschild and cyclic homology was obtained using this approach as a corollary of a simple short exact sequence. As an application of the developed theory, we show that the third reduced $K$-functor can be defined as the colimit of the second reduced $K$-functor applied to the fibre square of a free presentation of an algebra. We also prove a Hopf-type formula for odd-dimensional cyclic homology of an algebra over a field of characteristic zero. Bibliography: 17 titles.
Keywords: higher colimits, derived functors, $K$-theory, cyclic homology.
@article{SM_2019_210_9_a1,
     author = {S. O. Ivanov and R. V. Mikhailov and V. A. Sosnilo},
     title = {Higher colimits, derived functors and homology},
     journal = {Sbornik. Mathematics},
     pages = {1222--1258},
     year = {2019},
     volume = {210},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_9_a1/}
}
TY  - JOUR
AU  - S. O. Ivanov
AU  - R. V. Mikhailov
AU  - V. A. Sosnilo
TI  - Higher colimits, derived functors and homology
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1222
EP  - 1258
VL  - 210
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_9_a1/
LA  - en
ID  - SM_2019_210_9_a1
ER  - 
%0 Journal Article
%A S. O. Ivanov
%A R. V. Mikhailov
%A V. A. Sosnilo
%T Higher colimits, derived functors and homology
%J Sbornik. Mathematics
%D 2019
%P 1222-1258
%V 210
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2019_210_9_a1/
%G en
%F SM_2019_210_9_a1
S. O. Ivanov; R. V. Mikhailov; V. A. Sosnilo. Higher colimits, derived functors and homology. Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1222-1258. http://geodesic.mathdoc.fr/item/SM_2019_210_9_a1/

[1] H. Cartan, S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, NJ, 1956, xv+390 pp. | MR | MR | Zbl

[2] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, Ergeb. Math. Grenzgeb., 35, Springer-Verlag, New York, 1967, x+168 pp. | DOI | MR | MR | Zbl | Zbl

[3] S. M. Gersten, “$K_3$ of a ring is $H_3$ of the Steinberg group”, Proc. Amer. Math. Soc, 37:2 (1973), 366–368 | DOI | MR | Zbl

[4] S. M. Gersten, “K-theory of free rings”, Comm. Algebra, 1 (1974), 39–64 | DOI | MR | Zbl

[5] G. Donadze, N. Inassaridze, M. Ladra, “Cyclic homology via derived functors”, Homology Homotopy Appl., 12:2 (2010), 321–334 | DOI | MR | Zbl

[6] S. O. Ivanov, R. Mikhailov, “A higher limit approach to homology theories”, J. Pure Appl. Algebra, 219:6 (2015), 1915–1939 | DOI | MR | Zbl

[7] F. Keune, “The relativization of $K_2$”, J. Algebra, 54:1 (1978), 159–177 | DOI | MR | Zbl

[8] J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, 1992, xviii+454 pp. | DOI | MR | Zbl

[9] J. Lurie, Higher topos theory, Ann. of Math. Stud., 170, Princeton Univ. Press, Princeton, NJ, 2009, xviii+925 pp. | DOI | MR | Zbl

[10] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York–Berlin, 1971, ix+262 pp. | DOI | MR | Zbl

[11] B. A. Magurn, An algebraic introduction to $K$-theory, Encyclopedia Math. Appl., 87, Cambridge Univ. Press, Cambridge, 2002, xiv+676 pp. | DOI | MR | Zbl

[12] R. Mikhailov, I. B. S. Passi, “Generalized dimension subgroups and derived functors”, J. Pure Appl. Algebra, 220:6 (2016), 2143–2163 | DOI | MR | Zbl

[13] R. Mikhailov, I. B. S. Passi, “Dimension quotients, Fox subgroups and limits of functors”, Forum Math., 31:2 (2019), 385–401 ; arXiv: 1703.08304 | DOI | MR | Zbl

[14] D. G. Quillen, Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin–New York, 1967, iv+156 pp. | DOI | MR | Zbl

[15] D. Quillen, “Higher algebraic K-theory. I”, Algebraic K-theory (Battelle Memorial Inst., Seattle, WA, 1972), v. I, Springer Lect. Notes Math., 341, Higher K-theories, Springer, Berlin, 1973, 85–147 | DOI | MR | Zbl

[16] D. Quillen, “Cyclic cohomology and algebra extensions”, K-Theory, 3:3 (1989), 205–246 | DOI | MR | Zbl

[17] C. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38, Cambridge Univ. Press, Cambridge, 1994, xiv+450 pp. | DOI | MR | Zbl