Convergence of formal Dulac series satisfying an algebraic ordinary differential equation
Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1207-1221

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition is proposed which ensures that a Dulac series that formally satisfies an algebraic ordinary differential equation (ODE) is convergent. Such formal solutions of algebraic ODEs are quite common: in particular, the Painlevé III, V and VI equations have formal solutions given by Dulac series; they are convergent in view of the sufficient condition presented. Bibliography: 13 titles.
Keywords: Dulac series
Mots-clés : algebraic ODE, formal solution, convergence.
@article{SM_2019_210_9_a0,
     author = {R. R. Gontsov and I. V. Goryuchkina},
     title = {Convergence of formal {Dulac} series satisfying an algebraic ordinary differential equation},
     journal = {Sbornik. Mathematics},
     pages = {1207--1221},
     publisher = {mathdoc},
     volume = {210},
     number = {9},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_9_a0/}
}
TY  - JOUR
AU  - R. R. Gontsov
AU  - I. V. Goryuchkina
TI  - Convergence of formal Dulac series satisfying an algebraic ordinary differential equation
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1207
EP  - 1221
VL  - 210
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_9_a0/
LA  - en
ID  - SM_2019_210_9_a0
ER  - 
%0 Journal Article
%A R. R. Gontsov
%A I. V. Goryuchkina
%T Convergence of formal Dulac series satisfying an algebraic ordinary differential equation
%J Sbornik. Mathematics
%D 2019
%P 1207-1221
%V 210
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_9_a0/
%G en
%F SM_2019_210_9_a0
R. R. Gontsov; I. V. Goryuchkina. Convergence of formal Dulac series satisfying an algebraic ordinary differential equation. Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1207-1221. http://geodesic.mathdoc.fr/item/SM_2019_210_9_a0/