Convergence of formal Dulac series satisfying an algebraic ordinary differential equation
Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1207-1221
Voir la notice de l'article provenant de la source Math-Net.Ru
A sufficient condition is proposed which ensures that a Dulac series that formally satisfies an algebraic ordinary differential equation (ODE) is convergent. Such formal solutions of algebraic ODEs are quite common: in particular, the Painlevé III, V and VI equations have formal solutions given by Dulac series; they are convergent in view of the sufficient condition presented.
Bibliography: 13 titles.
Keywords:
Dulac series
Mots-clés : algebraic ODE, formal solution, convergence.
Mots-clés : algebraic ODE, formal solution, convergence.
@article{SM_2019_210_9_a0,
author = {R. R. Gontsov and I. V. Goryuchkina},
title = {Convergence of formal {Dulac} series satisfying an algebraic ordinary differential equation},
journal = {Sbornik. Mathematics},
pages = {1207--1221},
publisher = {mathdoc},
volume = {210},
number = {9},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_9_a0/}
}
TY - JOUR AU - R. R. Gontsov AU - I. V. Goryuchkina TI - Convergence of formal Dulac series satisfying an algebraic ordinary differential equation JO - Sbornik. Mathematics PY - 2019 SP - 1207 EP - 1221 VL - 210 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2019_210_9_a0/ LA - en ID - SM_2019_210_9_a0 ER -
R. R. Gontsov; I. V. Goryuchkina. Convergence of formal Dulac series satisfying an algebraic ordinary differential equation. Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1207-1221. http://geodesic.mathdoc.fr/item/SM_2019_210_9_a0/