Mots-clés : algebraic ODE, formal solution, convergence.
@article{SM_2019_210_9_a0,
author = {R. R. Gontsov and I. V. Goryuchkina},
title = {Convergence of formal {Dulac} series satisfying an algebraic ordinary differential equation},
journal = {Sbornik. Mathematics},
pages = {1207--1221},
year = {2019},
volume = {210},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_9_a0/}
}
TY - JOUR AU - R. R. Gontsov AU - I. V. Goryuchkina TI - Convergence of formal Dulac series satisfying an algebraic ordinary differential equation JO - Sbornik. Mathematics PY - 2019 SP - 1207 EP - 1221 VL - 210 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2019_210_9_a0/ LA - en ID - SM_2019_210_9_a0 ER -
R. R. Gontsov; I. V. Goryuchkina. Convergence of formal Dulac series satisfying an algebraic ordinary differential equation. Sbornik. Mathematics, Tome 210 (2019) no. 9, pp. 1207-1221. http://geodesic.mathdoc.fr/item/SM_2019_210_9_a0/
[1] H. Dulac, “Sur les cycles limites”, Bull. Soc. Math. France, 51 (1923), 45–188 | DOI | MR | Zbl
[2] Yu. S. Il'yashenko, Finiteness theorems for limit cycles, Transl. from the Russian, Transl. Math. Monogr., 94, Amer. Math. Soc., Providence, RI, 1991, x+288 pp. | DOI | MR | Zbl
[3] Yu. S. Ilyashenko, “Finiteness theorems for limit cycles: a digest of the revised proof”, Izv. Math., 80:1 (2016), 50–112 | DOI | DOI | MR | Zbl
[4] A. D. Bruno, “Asymptotic behaviour and expansions of solutions of an ordinary differential equation”, Russian Math. Surveys, 59:3 (2004), 429–480 | DOI | DOI | MR | Zbl
[5] A. D. Bruno, I. V. Goryuchkina, “Asymptotic expansions of solutions of the sixth Painlevé equation”, Trans. Moscow Math. Soc., 2010, 1–104 | DOI | MR | Zbl
[6] S. Shimomura, “The sixth Painlevé transcendents and the associated Schlesinger equation”, Publ. Res. Inst. Math. Sci., 51:3 (2015), 417–463 | DOI | MR | Zbl
[7] S. Shimomura, “Logarithmic solutions of the fifth Painlevé equation near the origin”, Tokyo J. Math., 39:3 (2017), 797–825 | DOI | MR | Zbl
[8] B. Malgrange, “Sur le théorème de Maillet”, Asymptot. Anal., 2:1 (1989), 1–4 | MR | Zbl
[9] R. R. Gontsov, I. V. Goryuchkina, “On the convergence of generalized power series satisfying an algebraic ODE”, Asymptot. Anal., 93:4 (2015), 311–325 | DOI | MR | Zbl
[10] J. Cano, “On the series defined by differential equations, with an extension of the Puiseux polygon construction to these equations”, Analysis, 13:1-2 (1993), 103–119 | DOI | MR | Zbl
[11] Éd. Goursat, Cours d'analyse mathématique, v. I, Gauthier-Villars, Paris, 1902, 620 pp. | MR | Zbl
[12] A. D. Polyanin, V. F. Zaitsev, Handbook of exact solutions for ordinary differential equations, 2nd ed., Chapman Hall/CRC, Boca Raton, FL, 2003, xxvi+787 pp. | MR | Zbl | Zbl
[13] A. V. Gridnev, “Power expansions of solutions of the modified third Painlevé equation in a neighborhood of zero”, J. Math. Sci. (N.Y.), 145:5 (2007), 5180–5187 | DOI | MR | Zbl