Differentiability of the Minkowski $?(x)$-function.~III
Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1148-1178

Voir la notice de l'article provenant de la source Math-Net.Ru

A new result on the derivative of the Minkowski function is established. Bibliography: 14 titles.
Keywords: Minkowski function, continued fraction
Mots-clés : continuant.
@article{SM_2019_210_8_a3,
     author = {I. D. Kan},
     title = {Differentiability of the {Minkowski} $?(x)${-function.~III}},
     journal = {Sbornik. Mathematics},
     pages = {1148--1178},
     publisher = {mathdoc},
     volume = {210},
     number = {8},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_8_a3/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - Differentiability of the Minkowski $?(x)$-function.~III
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1148
EP  - 1178
VL  - 210
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_8_a3/
LA  - en
ID  - SM_2019_210_8_a3
ER  - 
%0 Journal Article
%A I. D. Kan
%T Differentiability of the Minkowski $?(x)$-function.~III
%J Sbornik. Mathematics
%D 2019
%P 1148-1178
%V 210
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_8_a3/
%G en
%F SM_2019_210_8_a3
I. D. Kan. Differentiability of the Minkowski $?(x)$-function.~III. Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1148-1178. http://geodesic.mathdoc.fr/item/SM_2019_210_8_a3/