there exists a maximizer (a function with $L_p$-norm $1$) at which the supremum of the $s$-norm of the convolution is attained. A special analysis is carried out for the cases in which one of the exponents $q,p$, or $s$ is $1$ or $\infty$. Bibliography: 12 titles.
Mots-clés : convolution
@article{SM_2019_210_8_a2,
author = {G. V. Kalachev and S. Yu. Sadov},
title = {On maximizers of a~convolution operator in $L_p$-spaces},
journal = {Sbornik. Mathematics},
pages = {1129--1147},
year = {2019},
volume = {210},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_8_a2/}
}
G. V. Kalachev; S. Yu. Sadov. On maximizers of a convolution operator in $L_p$-spaces. Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1129-1147. http://geodesic.mathdoc.fr/item/SM_2019_210_8_a2/
[1] M. Pearson, “Extremals for a class of convolution operators”, Houston J. Math., 25:1 (1999), 43–54 | MR | Zbl
[2] G. H. Hardy, “The constants of certain inequalities”, J. London Math. Soc., 8:2 (1933), 114–119 | DOI | MR | Zbl
[3] K. I. Babenko, “An inequality in the theory of Fourier integrals”, Amer. Math. Soc. Transl. Ser. 2, 44, Amer. Math. Soc., Providence, RI, 1965, 115–128 | DOI | MR | Zbl
[4] W. Beckner, “Inequalities in Fourier analysis”, Ann. of Math. (2), 102:1 (1975), 159–182 | DOI | MR | Zbl
[5] P. L. Lions, “The concentration-compactness principle in the calculus of variations. The locally compact case. I”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1:2 (1984), 109–145 | DOI | MR | Zbl
[6] K. Tintarev, K.-H. Fieseler, Concentration compactness. Functional-analytic grounds and applications, Imperial College Press, London, 2007, xii+264 pp. | DOI | MR | Zbl
[7] M. O. Korpusov, A. G. Sveshnikov, Nelineinyi funktsionalnyi analiz i matematicheskoe modelirovanie v fizike. Metody issledovaniya nelineinykh operatorov, KRASAND, M., 2011, 480 pp.
[8] W. Hengartner, R. Theodorescu, Concentration functions, Probab. Math. Statist., 20, Academic Press, New York–London, 1973, xii+139 pp. | MR | MR | Zbl | Zbl
[9] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl
[10] R. C. Busby, H. A. Smith, “Product-convolution operators and mixed-norm spaces”, Trans. Amer. Math. Soc., 263:2 (1981), 309–341 | DOI | MR | Zbl
[11] J. H. B. Kemperman, “A general functional equation”, Trans. Amer. Math. Soc., 86:1 (1957), 28–56 | DOI | MR | Zbl
[12] J. Aczél, J. Dhombres, Functional equations in several variables, Encyclopedia Math. Appl., 31, Cambridge Univ. Press, Cambridge, 1989, xiv+462 pp. | DOI | MR | Zbl