An approach problem for a control system and a compact set in the phase space in the presence of phase constraints
Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1092-1128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A control system with a phase constraint is considered in a finite-dimensional Euclidean space. The problem of making this system approach the target set at a fixed time instant is studied. A method for constructing an approximate solution to the approach problem is given, which involves the concept of the solvability set of an approach problem. Bibliography: 24 titles.
Keywords: control system, phase constraint, approach problem, solvability set, differential inclusion.
@article{SM_2019_210_8_a1,
     author = {A. A. Ershov and A. V. Ushakov and V. N. Ushakov},
     title = {An approach problem for a~control system and a~compact set in the phase space in the presence of phase constraints},
     journal = {Sbornik. Mathematics},
     pages = {1092--1128},
     year = {2019},
     volume = {210},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_8_a1/}
}
TY  - JOUR
AU  - A. A. Ershov
AU  - A. V. Ushakov
AU  - V. N. Ushakov
TI  - An approach problem for a control system and a compact set in the phase space in the presence of phase constraints
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1092
EP  - 1128
VL  - 210
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_8_a1/
LA  - en
ID  - SM_2019_210_8_a1
ER  - 
%0 Journal Article
%A A. A. Ershov
%A A. V. Ushakov
%A V. N. Ushakov
%T An approach problem for a control system and a compact set in the phase space in the presence of phase constraints
%J Sbornik. Mathematics
%D 2019
%P 1092-1128
%V 210
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2019_210_8_a1/
%G en
%F SM_2019_210_8_a1
A. A. Ershov; A. V. Ushakov; V. N. Ushakov. An approach problem for a control system and a compact set in the phase space in the presence of phase constraints. Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1092-1128. http://geodesic.mathdoc.fr/item/SM_2019_210_8_a1/

[1] N. N. Krasovskii, Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR | Zbl

[2] N. N. Krasovskii, A. I. Subbotin, Game-theoretical control problems, Springer Ser. Soviet Math., Springer-Verlag, New York, 1988, xii+517 pp. | MR | MR | Zbl | Zbl

[3] A. B. Kurzhanskii, Izbrannye trudy, Izd-vo Mosk. un-ta, M., 2009, 756 pp.

[4] A. B. Kurzhanskii, Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[5] Yu. S. Osipov, Izbrannye trudy, Izd-vo Mosk. un-ta, M., 2009, 654 pp.

[6] A. V. Kryazhimskii, Yu. S. Osipov, “On an algorithmic criterion of the solvability of game problems for linear controlled systems”, Proc. Steklov Inst. Math. (Suppl.), 2000, suppl. 1, S154–S162 | MR | Zbl

[7] A. I. Subbotin, A. G. Chentsov, Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[8] N. N. Subbotina, A. I. Subbotin, “Alternative for the encounter-evasion differential game with constraints on the momenta of the players' controls”, J. Appl. Math. Mech., 39:3 (1975), 376–385 | DOI | MR | Zbl

[9] A. M. Taras'yev, V. N. Ushakov, A. P. Khripunov, “On a computational algorithm for solving game control problems”, J. Appl. Math. Mech., 51:2 (1987), 167–172 | DOI | MR | Zbl

[10] Yu. S. Osipov, A. V. Kryazhimskii, V. I. Maksimov, Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 291 pp.

[11] F. L. Chernousko, A. A. Melikyan, Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR | Zbl

[12] M. I. Gusev, I. V. Zykov, “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 114–125 | DOI | MR | Zbl

[13] T. F. Filippova, “External estimates for reachable sets of a control system with uncertainty and combined nonlinearity”, Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 32–43 | DOI | MR | Zbl

[14] E. S. Polovinkin, “Stability of terminal sets and optimization of pursuit time in differential games”, Differential Equations, 20 (1984), 330–341 | MR | Zbl

[15] A. V. Ushakov, “Ob odnom variante priblizhennogo postroeniya razreshayuschikh upravlenii v zadache o sblizhenii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 4, 94–107 | Zbl

[16] V. N. Ushakov, V. I. Ukhobotov, A. V. Ushakov, G. V. Parshikov, “On solving approach problems for control systems”, Proc. Steklov Inst. Math., 291 (2015), 263–278 | DOI | DOI | MR | Zbl

[17] V. N. Ushakov, A. A. Ershov, “K resheniyu zadach upravleniya s fiksirovannym momentom okonchaniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 26:4 (2016), 543–564 | MR | Zbl

[18] A. V. Arutyunov, Lektsii po vypuklomu i mnogoznachnomu analizu, Fizmatlit, M., 2014, 188 pp.

[19] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl

[20] A. V. Arutyunov, “Stability of coincidence points and properties of covering mappings”, Math. Notes, 86:2 (2009), 153–158 | DOI | DOI | MR | Zbl

[21] V. N. Ushakov, A. P. Khripunov, “Approximate construction of solutions in game-theoretic control problems”, J. Appl. Math. Mekh., 61:3 (1997), 401–408 | DOI | MR | Zbl

[22] A. P. Khripunov, Postroenie oblastei dostizhimostei i stabilnykh mostov v nelineinykh zadachakh upravleniya, Diss. ... kand. fiz.-matem. nauk, IMM UrO RAN, Ekaterinburg, 1992, 400 pp.

[23] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York–London, 1970, xx+572 pp. | MR | MR | Zbl

[24] H. K. Khalil, Nonlinear systems, Macmillan Publ. Co., New York, 1992, xii+564 pp. | MR | Zbl