An approach problem for a~control system and a~compact set in the phase space in the presence of phase constraints
Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1092-1128
Voir la notice de l'article provenant de la source Math-Net.Ru
A control system with a phase constraint is considered in a finite-dimensional Euclidean space. The problem of making this system approach the target set at a fixed time instant is studied. A method for constructing an approximate solution to the approach problem is given, which involves the concept of the solvability set of an approach problem.
Bibliography: 24 titles.
Keywords:
control system, phase constraint, approach problem, solvability set, differential inclusion.
@article{SM_2019_210_8_a1,
author = {A. A. Ershov and A. V. Ushakov and V. N. Ushakov},
title = {An approach problem for a~control system and a~compact set in the phase space in the presence of phase constraints},
journal = {Sbornik. Mathematics},
pages = {1092--1128},
publisher = {mathdoc},
volume = {210},
number = {8},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_8_a1/}
}
TY - JOUR AU - A. A. Ershov AU - A. V. Ushakov AU - V. N. Ushakov TI - An approach problem for a~control system and a~compact set in the phase space in the presence of phase constraints JO - Sbornik. Mathematics PY - 2019 SP - 1092 EP - 1128 VL - 210 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2019_210_8_a1/ LA - en ID - SM_2019_210_8_a1 ER -
%0 Journal Article %A A. A. Ershov %A A. V. Ushakov %A V. N. Ushakov %T An approach problem for a~control system and a~compact set in the phase space in the presence of phase constraints %J Sbornik. Mathematics %D 2019 %P 1092-1128 %V 210 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2019_210_8_a1/ %G en %F SM_2019_210_8_a1
A. A. Ershov; A. V. Ushakov; V. N. Ushakov. An approach problem for a~control system and a~compact set in the phase space in the presence of phase constraints. Sbornik. Mathematics, Tome 210 (2019) no. 8, pp. 1092-1128. http://geodesic.mathdoc.fr/item/SM_2019_210_8_a1/