Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity
Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 1043-1066 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An elliptic Dirichlet boundary value problem is studied which has a nonnegative parameter $\lambda$ multiplying a discontinuous nonlinearity on the right-hand side of the equation. The nonlinearity is zero for values of the phase variable not exceeding some positive number in absolute value and grows sublinearly at infinity. For homogeneous boundary conditions, it is established that the spectrum $\sigma$ of the nonlinear problem under consideration is closed ($\sigma$ consists of those parameter values for which the boundary value problem has a nonzero solution). A positive lower bound and an upper bound are obtained for the smallest value of the spectrum, $\lambda^*$. The case when the boundary function is positive, while the nonlinearity is zero for nonnegative values of the phase variable and nonpositive for negative values, is also considered. This problem is transformed into a problem with homogeneous boundary conditions. Under the additional assumption that the nonlinearity is equal to the difference of functions that are nondecreasing in the phase variable, it is proved that $\sigma=[\lambda^*,+\infty)$ and that for each $\lambda\in\sigma$ the problem has a nontrivial semiregular solution. If there exists a positive constant $M$ such that the sum of the nonlinearity and $Mu$ is a function which is nondecreasing in the phase variable $u$, then for any $\lambda\in\sigma$ the boundary value problem has a minimal nontrivial solution $u_\lambda(x)$. The required solution is semiregular, and $u_\lambda(x)$ is a decreasing mapping with respect to $\lambda$ on $[\lambda^*,+\infty)$. Applications of the results to the Gol'dshtik mathematical model for separated flows in an incompressible fluid are considered. Bibliography: 37 titles.
Keywords: spectrum, elliptic boundary value problem, parameter, discontinuous nonlinearity, semiregular solution.
@article{SM_2019_210_7_a4,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {Properties of the spectrum of an elliptic boundary value problem with a~parameter and a~discontinuous nonlinearity},
     journal = {Sbornik. Mathematics},
     pages = {1043--1066},
     year = {2019},
     volume = {210},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_7_a4/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1043
EP  - 1066
VL  - 210
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_7_a4/
LA  - en
ID  - SM_2019_210_7_a4
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity
%J Sbornik. Mathematics
%D 2019
%P 1043-1066
%V 210
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2019_210_7_a4/
%G en
%F SM_2019_210_7_a4
V. N. Pavlenko; D. K. Potapov. Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity. Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 1043-1066. http://geodesic.mathdoc.fr/item/SM_2019_210_7_a4/

[1] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl

[2] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, Systems with hysteresis, Springer-Verlag, Berlin, 1989, xviii+410 pp. | DOI | MR | MR | Zbl | Zbl

[3] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, “Regular solutions of equations with discontinuous nonlinearities”, Soviet Math. Dokl., 17:1 (1976), 128–132 | MR | Zbl

[4] V. N. Pavlenko, D. K. Potapov, “The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities”, Sb. Math., 206:9 (2015), 1281–1298 | DOI | DOI | MR | Zbl

[5] V. N. Pavlenko, D. K. Potapov, “Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity”, Siberian Adv. Math., 27:1 (2017), 16–25 | DOI | DOI | MR | Zbl

[6] G. Barletta, A. Chinnì, D. O'Regan, “Existence results for a Neumann problem involving the $p(x)$-Laplacian with discontinuous nonlinearities”, Nonlinear Anal. Real World Appl., 27 (2016), 312–325 | DOI | MR | Zbl

[7] S. Bensid, “Perturbation of the free boundary in elliptic problem with discontinuities”, Electron. J. Differential Equations, 2016 (2016), 132, 14 pp. | MR | Zbl

[8] R. Dhanya, S. Prashanth, S. Tiwari, K. Sreenadh, “Elliptic problems in $\mathbb{R}^N$ with critical and singular discontinuous nonlinearities”, Complex Var. Elliptic Equ., 61:12 (2016), 1656–1676 | DOI | MR | Zbl

[9] V. N. Pavlenko, D. K. Potapov, “Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides”, Sb. Math., 208:1 (2017), 157–172 | DOI | DOI | MR | Zbl

[10] V. N. Pavlenko, D. K. Potapov, “Existence of three nontrivial solutions of an elliptic boundary-value problem with discontinuous nonlinearity in the case of strong resonance”, Math. Notes, 101:2 (2017), 284–296 | DOI | DOI | MR | Zbl

[11] V. N. Pavlenko, D. K. Potapov, “Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities”, Siberian Math. J., 58:2 (2017), 288–295 | DOI | DOI | MR | Zbl

[12] S. Heidarkhani, F. Gharehgazlouei, “Multiplicity of elliptic equations involving the $p$-Laplacian with discontinuous nonlinearities”, Complex Var. Elliptic Equ., 62:3 (2017), 413–429 | DOI | MR | Zbl

[13] D. K. Potapov, “On solutions to the Goldshtik problem”, Num. Anal. Appl., 5:4 (2012), 342–347 | DOI | Zbl

[14] D. K. Potapov, V. V. Yevstafyeva, “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differential Equations, 2013 (2013), 255, 6 pp. | MR | Zbl

[15] Y. Zhang, I. Danaila, “Existence and numerical modelling of vortex rings with elliptic boundaries”, Appl. Math. Model., 37:7 (2013), 4809–4824 | DOI | MR | Zbl

[16] D. K. Potapov, “On one problem of electrophysics with discontinuous nonlinearity”, Differ. Equ., 50:3 (2014), 419–422 | DOI | DOI | MR | Zbl

[17] V. N. Pavlenko, D. K. Potapov, “Elenbaas problem of electric arc discharge”, Math. Notes, 103:1 (2018), 89–95 | DOI | DOI | MR | Zbl

[18] P. Nistri, “Positive solutions of a non-linear eigenvalue problem with discontinuous non-linearity”, Proc. Roy. Soc. Edinburgh Sect. A, 83:1-2 (1979), 133–145 | DOI | MR | Zbl

[19] W. Allegretto, P. Nistri, “Elliptic equations with discontinuous nonlinearities”, Topol. Methods Nonlinear Anal., 2:2 (1993), 233–251 | DOI | MR | Zbl

[20] D. K. Potapov, “On an upper bound for the value of the bifurcation parameter in eigenvalue problems for elliptic equations with discontinuous nonlinearities”, Differ. Equ., 44:5 (2008), 737–739 | DOI | MR | Zbl

[21] G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059 | DOI | MR | Zbl

[22] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl

[23] V. N. Pavlenko, “The existence of solutions for nonlinear equations with discontinuous monotone operators”, Moscow Univ. Math. Bull., 28:6 (1974), 70–77 | MR | Zbl

[24] M. A. Gol'dshtik, “A mathematical model of separated flows in an incompressible liquid”, Soviet Phys. Dokl., 7 (1963), 1090–1093 | Zbl

[25] D. K. Potapov, “Bifurcation problems for equations of elliptic type with discontinuous nonlinearities”, Math. Notes, 90:2 (2011), 260–264 | DOI | DOI | MR | Zbl

[26] N. Dunford, J. T. Schwartz, Linear operators, v. II, Spectral theory. Self adjoint operators in Hilbert space, Intersci. Publ. John Wiley Sons, New York–London, 1963, ix+859–1923+7 pp. | MR | MR | Zbl | Zbl

[27] J. Douchet, “Pairs of positive solutions of elliptic partial differential equations with discontinuous nonlinearities”, J. Math. Anal. Appl., 90:2 (1982), 536–547 | DOI | MR | Zbl

[28] D. K. Potapov, “Continuous approximations of Gol'dshtik's model”, Math. Notes, 87:2 (2010), 244–247 | DOI | DOI | MR | Zbl

[29] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley-Intersci. Publ. John Wiley Sons, Inc., New York, 1983, xiii+308 pp. | MR | MR | Zbl | Zbl

[30] Kung-Ching Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl

[31] L. Gasiński, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Ser. Math. Anal. Appl., 8, Chapman Hall/CRC, Boca Raton, FL, 2005, xiv+775 pp. | MR | Zbl

[32] V. N. Pavlenko, “Existence of semiregular solutions of a first boundary-value problem for a parabolic equation with a nonmonotonic discontinuous nonlinearity”, Differ. Equ., 27:3 (1991), 374–379 | MR | Zbl

[33] V. N. Pavlenko, “Control of singular distributed parabolic systems with discontinuous nonlinearities”, Ukrainian Math. J., 46:6 (1994), 790–798 | DOI | MR | Zbl

[34] V. N. Pavlenko, O. V. Ul'yanova, “The method of upper and lower solutions for equations of elliptic type with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 42:11 (1998), 65–72 | MR | Zbl

[35] M. A. Krasnosel'skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964, 381 pp. | MR | MR | Zbl | Zbl

[36] V. N. Pavlenko, D. K. Potapov, “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl

[37] I. Massabo, C. A. Stuart, “Elliptic eigenvalue problems with discontinuous nonlinearities”, J. Math. Anal. Appl., 66:2 (1978), 261–281 | DOI | MR | Zbl