@article{SM_2019_210_7_a4,
author = {V. N. Pavlenko and D. K. Potapov},
title = {Properties of the spectrum of an elliptic boundary value problem with a~parameter and a~discontinuous nonlinearity},
journal = {Sbornik. Mathematics},
pages = {1043--1066},
year = {2019},
volume = {210},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_7_a4/}
}
TY - JOUR AU - V. N. Pavlenko AU - D. K. Potapov TI - Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity JO - Sbornik. Mathematics PY - 2019 SP - 1043 EP - 1066 VL - 210 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2019_210_7_a4/ LA - en ID - SM_2019_210_7_a4 ER -
%0 Journal Article %A V. N. Pavlenko %A D. K. Potapov %T Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity %J Sbornik. Mathematics %D 2019 %P 1043-1066 %V 210 %N 7 %U http://geodesic.mathdoc.fr/item/SM_2019_210_7_a4/ %G en %F SM_2019_210_7_a4
V. N. Pavlenko; D. K. Potapov. Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity. Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 1043-1066. http://geodesic.mathdoc.fr/item/SM_2019_210_7_a4/
[1] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl
[2] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, Systems with hysteresis, Springer-Verlag, Berlin, 1989, xviii+410 pp. | DOI | MR | MR | Zbl | Zbl
[3] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, “Regular solutions of equations with discontinuous nonlinearities”, Soviet Math. Dokl., 17:1 (1976), 128–132 | MR | Zbl
[4] V. N. Pavlenko, D. K. Potapov, “The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities”, Sb. Math., 206:9 (2015), 1281–1298 | DOI | DOI | MR | Zbl
[5] V. N. Pavlenko, D. K. Potapov, “Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity”, Siberian Adv. Math., 27:1 (2017), 16–25 | DOI | DOI | MR | Zbl
[6] G. Barletta, A. Chinnì, D. O'Regan, “Existence results for a Neumann problem involving the $p(x)$-Laplacian with discontinuous nonlinearities”, Nonlinear Anal. Real World Appl., 27 (2016), 312–325 | DOI | MR | Zbl
[7] S. Bensid, “Perturbation of the free boundary in elliptic problem with discontinuities”, Electron. J. Differential Equations, 2016 (2016), 132, 14 pp. | MR | Zbl
[8] R. Dhanya, S. Prashanth, S. Tiwari, K. Sreenadh, “Elliptic problems in $\mathbb{R}^N$ with critical and singular discontinuous nonlinearities”, Complex Var. Elliptic Equ., 61:12 (2016), 1656–1676 | DOI | MR | Zbl
[9] V. N. Pavlenko, D. K. Potapov, “Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides”, Sb. Math., 208:1 (2017), 157–172 | DOI | DOI | MR | Zbl
[10] V. N. Pavlenko, D. K. Potapov, “Existence of three nontrivial solutions of an elliptic boundary-value problem with discontinuous nonlinearity in the case of strong resonance”, Math. Notes, 101:2 (2017), 284–296 | DOI | DOI | MR | Zbl
[11] V. N. Pavlenko, D. K. Potapov, “Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities”, Siberian Math. J., 58:2 (2017), 288–295 | DOI | DOI | MR | Zbl
[12] S. Heidarkhani, F. Gharehgazlouei, “Multiplicity of elliptic equations involving the $p$-Laplacian with discontinuous nonlinearities”, Complex Var. Elliptic Equ., 62:3 (2017), 413–429 | DOI | MR | Zbl
[13] D. K. Potapov, “On solutions to the Goldshtik problem”, Num. Anal. Appl., 5:4 (2012), 342–347 | DOI | Zbl
[14] D. K. Potapov, V. V. Yevstafyeva, “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differential Equations, 2013 (2013), 255, 6 pp. | MR | Zbl
[15] Y. Zhang, I. Danaila, “Existence and numerical modelling of vortex rings with elliptic boundaries”, Appl. Math. Model., 37:7 (2013), 4809–4824 | DOI | MR | Zbl
[16] D. K. Potapov, “On one problem of electrophysics with discontinuous nonlinearity”, Differ. Equ., 50:3 (2014), 419–422 | DOI | DOI | MR | Zbl
[17] V. N. Pavlenko, D. K. Potapov, “Elenbaas problem of electric arc discharge”, Math. Notes, 103:1 (2018), 89–95 | DOI | DOI | MR | Zbl
[18] P. Nistri, “Positive solutions of a non-linear eigenvalue problem with discontinuous non-linearity”, Proc. Roy. Soc. Edinburgh Sect. A, 83:1-2 (1979), 133–145 | DOI | MR | Zbl
[19] W. Allegretto, P. Nistri, “Elliptic equations with discontinuous nonlinearities”, Topol. Methods Nonlinear Anal., 2:2 (1993), 233–251 | DOI | MR | Zbl
[20] D. K. Potapov, “On an upper bound for the value of the bifurcation parameter in eigenvalue problems for elliptic equations with discontinuous nonlinearities”, Differ. Equ., 44:5 (2008), 737–739 | DOI | MR | Zbl
[21] G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059 | DOI | MR | Zbl
[22] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl
[23] V. N. Pavlenko, “The existence of solutions for nonlinear equations with discontinuous monotone operators”, Moscow Univ. Math. Bull., 28:6 (1974), 70–77 | MR | Zbl
[24] M. A. Gol'dshtik, “A mathematical model of separated flows in an incompressible liquid”, Soviet Phys. Dokl., 7 (1963), 1090–1093 | Zbl
[25] D. K. Potapov, “Bifurcation problems for equations of elliptic type with discontinuous nonlinearities”, Math. Notes, 90:2 (2011), 260–264 | DOI | DOI | MR | Zbl
[26] N. Dunford, J. T. Schwartz, Linear operators, v. II, Spectral theory. Self adjoint operators in Hilbert space, Intersci. Publ. John Wiley Sons, New York–London, 1963, ix+859–1923+7 pp. | MR | MR | Zbl | Zbl
[27] J. Douchet, “Pairs of positive solutions of elliptic partial differential equations with discontinuous nonlinearities”, J. Math. Anal. Appl., 90:2 (1982), 536–547 | DOI | MR | Zbl
[28] D. K. Potapov, “Continuous approximations of Gol'dshtik's model”, Math. Notes, 87:2 (2010), 244–247 | DOI | DOI | MR | Zbl
[29] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley-Intersci. Publ. John Wiley Sons, Inc., New York, 1983, xiii+308 pp. | MR | MR | Zbl | Zbl
[30] Kung-Ching Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl
[31] L. Gasiński, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Ser. Math. Anal. Appl., 8, Chapman Hall/CRC, Boca Raton, FL, 2005, xiv+775 pp. | MR | Zbl
[32] V. N. Pavlenko, “Existence of semiregular solutions of a first boundary-value problem for a parabolic equation with a nonmonotonic discontinuous nonlinearity”, Differ. Equ., 27:3 (1991), 374–379 | MR | Zbl
[33] V. N. Pavlenko, “Control of singular distributed parabolic systems with discontinuous nonlinearities”, Ukrainian Math. J., 46:6 (1994), 790–798 | DOI | MR | Zbl
[34] V. N. Pavlenko, O. V. Ul'yanova, “The method of upper and lower solutions for equations of elliptic type with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 42:11 (1998), 65–72 | MR | Zbl
[35] M. A. Krasnosel'skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964, 381 pp. | MR | MR | Zbl | Zbl
[36] V. N. Pavlenko, D. K. Potapov, “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl
[37] I. Massabo, C. A. Stuart, “Elliptic eigenvalue problems with discontinuous nonlinearities”, J. Math. Anal. Appl., 66:2 (1978), 261–281 | DOI | MR | Zbl