Mots-clés : domain of univalence.
@article{SM_2019_210_7_a3,
author = {O. S. Kudryavtseva and A. P. Solodov},
title = {Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a~disc with two fixed points},
journal = {Sbornik. Mathematics},
pages = {1019--1042},
year = {2019},
volume = {210},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_7_a3/}
}
TY - JOUR AU - O. S. Kudryavtseva AU - A. P. Solodov TI - Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a disc with two fixed points JO - Sbornik. Mathematics PY - 2019 SP - 1019 EP - 1042 VL - 210 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2019_210_7_a3/ LA - en ID - SM_2019_210_7_a3 ER -
%0 Journal Article %A O. S. Kudryavtseva %A A. P. Solodov %T Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a disc with two fixed points %J Sbornik. Mathematics %D 2019 %P 1019-1042 %V 210 %N 7 %U http://geodesic.mathdoc.fr/item/SM_2019_210_7_a3/ %G en %F SM_2019_210_7_a3
O. S. Kudryavtseva; A. P. Solodov. Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a disc with two fixed points. Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 1019-1042. http://geodesic.mathdoc.fr/item/SM_2019_210_7_a3/
[1] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | DOI | MR | MR | Zbl | Zbl
[2] G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954, 236 pp. | MR | Zbl
[3] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl
[4] C. Carathéodory, “Über die Winkelderivierten von beschränkten analytischen Funktionen”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1929 (1929), 39–54 | Zbl
[5] E. Landau, G. Valiron, “A deduction from Schwarz's lemma”, J. London Math. Soc., 4:3 (1929), 162–163 | DOI | MR | Zbl
[6] V. V. Goryainov, O. S. Kudryavtseva, “One-parameter semigroups of analytic functions, fixed points and the Koenigs function”, Sb. Math., 202:7 (2011), 971–1000 | DOI | DOI | MR | Zbl
[7] V. V. Goryainov, “Evolution families of conformal mappings with fixed points and the Löwner–Kufarev equation”, Sb. Math., 206:1 (2015), 33–60 | DOI | DOI | MR | Zbl
[8] V. V. Goryainov, “Holomorphic mappings of the unit disc into itself with two fixed points”, Sb. Math., 208:3 (2017), 360–376 | DOI | DOI | MR | Zbl
[9] F. G. Avkhadiev, L. A. Aksent'ev, “The main results on sufficient conditions for an analytic function to be schlicht”, Russian Math. Surveys, 30:4 (1975), 1–63 | DOI | MR | Zbl
[10] E. Study, Vorlesungen über ausgewälte Gegenstände der Geometrie. Zweiter Heft. Konforme Abbildung einfach zusammenhängender Bereiche, B. G. Teubner, Leipzig und Berlin, 1913, iv+142 pp. | Zbl
[11] J. W. Alexander, “Functions which map the interior of the unit circle upon simple regions”, Ann. of Math. (2), 17:1 (1915), 12–22 | DOI | MR | Zbl
[12] L. Špaček, “Příspěvek k teorii funkcí prostých [Contribution à la théorie des fonctions univalentes]”, Časopis Pěst. Mat. Fys., 62:2 (1932), 12–19 | Zbl
[13] Z. Nehari, “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl
[14] G. V. Kuzmina, “Chislennoe opredelenie radiusov odnolistnosti analiticheskikh funktsii”, Raboty po priblizhennomu analizu, Tr. MIAN SSSR, 53, Izd-vo AN SSSR, M.–L., 1959, 192–235 | MR | Zbl
[15] E. Landau, “Der Picard–Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1926 (1926), 467–474 | Zbl
[16] Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. I”, J. London Math. Soc. (2), 19:3 (1979), 439–447 | DOI | MR | Zbl
[17] J. Becker, Ch. Pommerenke, “Angular derivatives for holomorphic self-maps of the disk”, Comput. Methods Funct. Theory, 17:3 (2017), 487–497 | DOI | MR | Zbl
[18] C. Carathéodory, Conformal representation, Camb. Tracts Math. Math. Phys., 28, Reprint of 2nd. ed., Cambridge Univ. Press, Cambridge, 1969, x+115 pp. | MR | Zbl
[19] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | DOI | MR | Zbl
[20] C. Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, 25, Vandenhoeck Ruprecht, Göttingen, 1975, 376 pp. | MR | Zbl
[21] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl