Smoothness of functions and Fourier coefficients
Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 994-1018

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider functions represented as trigonometric series with general monotone Fourier coefficients. The main result of the paper is the equivalence of the $L_p$ modulus of smoothness, $1$, of such functions to certain sums of their Fourier coefficients. As applications, for such functions we give a description of the norm in the Besov space and sharp direct and inverse theorems in approximation theory. Bibliography: 34 titles.
Keywords: Fourier series, general monotone sequences, moduli of smoothness.
@article{SM_2019_210_7_a2,
     author = {M. I. Dyachenko and A. B. Mukanov and S. Yu. Tikhonov},
     title = {Smoothness of functions and {Fourier} coefficients},
     journal = {Sbornik. Mathematics},
     pages = {994--1018},
     publisher = {mathdoc},
     volume = {210},
     number = {7},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_7_a2/}
}
TY  - JOUR
AU  - M. I. Dyachenko
AU  - A. B. Mukanov
AU  - S. Yu. Tikhonov
TI  - Smoothness of functions and Fourier coefficients
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 994
EP  - 1018
VL  - 210
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_7_a2/
LA  - en
ID  - SM_2019_210_7_a2
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%A A. B. Mukanov
%A S. Yu. Tikhonov
%T Smoothness of functions and Fourier coefficients
%J Sbornik. Mathematics
%D 2019
%P 994-1018
%V 210
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_7_a2/
%G en
%F SM_2019_210_7_a2
M. I. Dyachenko; A. B. Mukanov; S. Yu. Tikhonov. Smoothness of functions and Fourier coefficients. Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 994-1018. http://geodesic.mathdoc.fr/item/SM_2019_210_7_a2/