, of such functions to certain sums of their Fourier coefficients. As applications, for such functions we give a description of the norm in the Besov space and sharp direct and inverse theorems in approximation theory. Bibliography: 34 titles.
@article{SM_2019_210_7_a2,
author = {M. I. Dyachenko and A. B. Mukanov and S. Yu. Tikhonov},
title = {Smoothness of functions and {Fourier} coefficients},
journal = {Sbornik. Mathematics},
pages = {994--1018},
year = {2019},
volume = {210},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_7_a2/}
}
M. I. Dyachenko; A. B. Mukanov; S. Yu. Tikhonov. Smoothness of functions and Fourier coefficients. Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 994-1018. http://geodesic.mathdoc.fr/item/SM_2019_210_7_a2/
[1] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl
[2] S. Tikhonov, “Trigonometric series of Nikol'skii classes”, Acta Math. Hungar., 114:1-2 (2007), 61–78 | DOI | MR | Zbl
[3] G. G. Lorentz, “Fourier-Koeffizienten und Funktionenklassen”, Math. Z., 51:2 (1948), 135–149 | DOI | MR | Zbl
[4] A. F. Timan, M. F. Timan, “Obobschennyi modul nepreryvnosti i nailuchshee priblizhenie v srednem”, Dokl. AN SSSR, 71:1 (1950), 17–20 | MR | Zbl
[5] D. Gorbachev, S. Tikhonov, “Moduli of smoothness and growth properties of Fourier transforms: two-sided estimates”, J. Approx. Theory, 164:9 (2012), 1283–1312 | DOI | MR | Zbl
[6] A. A. Konyushkov, “O klassakh Lipshitsa”, Izv. AN SSSR. Ser. matem., 21:3 (1957), 423–448 | MR | Zbl
[7] S. Aljančić, “On the integral moduli of continuity in $L_p\ (1
\infty)$ of Fourier series with monotone coefficients”, Proc. Amer. Math. Soc., 17:2 (1966), 287–294 | DOI | MR | Zbl[8] M. K. Potapov, M. Berisha, “Moduli gladkosti i koeffitsienty Fure periodicheskikh funktsii odnogo peremennogo”, Publ. Inst. Math. (Beograd) (N.S.), 26(40) (1979), 215–228 | MR | Zbl
[9] S. Aljančić, M. Tomić, “Über den Stetigkeitsmodul von Fourier-Reihen mit monotonen Koeffizienten”, Math. Z., 88:3 (1965), 274–284 | DOI | MR | Zbl
[10] R. Askey, “Smoothness conditions for Fourier series with monotone coefficients”, Acta Sci. Math. (Szeged), 28 (1967), 169–171 | MR | Zbl
[11] R. P. Boas Jr., Integrability theorems for trigonometric transforms, Ergeb. Math. Grenzgeb., 38, Springer-Verlag New York Inc., New York, 1967, v+66 pp. | MR | Zbl
[12] Y. Kolomoitsev, S. Tikhonov, “Hardy–Littlewood and Ulyanov inequalities”, Mem. Amer. Math. Soc. (to appear)
[13] B. V. Simonov, S. Yu. Tikhonov, “Embedding theorems in constructive approximation”, Sb. Math., 199:9 (2008), 1367–1407 | DOI | DOI | MR | Zbl
[14] S. Tikhonov, “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl
[15] S. Tikhonov, “Best approximation and moduli of smoothness: computation and equivalence theorems”, J. Approx. Theory, 153:1 (2008), 19–39 | DOI | MR | Zbl
[16] D. B. H. Cline, “Regularly varying rates of decrease for moduli of continuity and Fourier transforms of functions on $\mathbb{R}^d$”, J. Math. Anal. Appl., 159:2 (1991), 507–519 | DOI | MR | Zbl
[17] W. Trebels, “Estimates for moduli of continuity of functions given by their Fourier transform”, Constructive theory of functions of several variables (Math. Res. Inst., Oberwolfach, 1976), Lecture Notes in Math., 571, Springer, Berlin, 1977, 277–288 | DOI | MR | Zbl
[18] J. García-Cuerva, V. I. Kolyada, “Rearrangement estimates for Fourier transforms in $L^p$ and $H^p$ in terms of moduli of continuity”, Math. Nachr., 228 (2001), 123–144 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[19] R. J. Le, S. P. Zhou, “A remark on “two-sided” monotonicity condition: an application to $L_p$ convergence”, Acta Math. Hungar., 113:1-2 (2006), 159–169 | DOI | MR | Zbl
[20] L. Leindler, “Relations among Fourier coefficients and sum-functions”, Acta Math. Hungar., 104:1-2 (2004), 171–183 | DOI | MR | Zbl
[21] C. Oehring, “Asymptotics of rearranged trigonometric and Walsh–Fourier coefficients of smooth functions”, J. Math. Anal. Appl., 164:2 (1992), 422–446 | DOI | MR | Zbl
[22] B. Szal, “On the integral modulus of continuity of Fourier series”, Acta Math. Hungar., 131:1-2 (2011), 138–159 | DOI | MR | Zbl
[23] Dansheng Yu, Songping Zhou, “On relations among Fourier coefficients and sum-functions”, Studia Sci. Math. Hungar., 45:3 (2008), 301–319 | DOI | MR | Zbl
[24] E. Liflyand, S. Tikhonov, “A concept of general monotonicity and applications”, Math. Nachr., 284:8-9 (2011), 1083–1098 | DOI | MR | Zbl
[25] Lei Feng, V. Totik, Song Ping Zhou, “Trigonometric series with a generalized monotonicity condition”, Acta Math. Sin. (Engl. Ser.), 30:8 (2014), 1289–1296 | DOI | MR | Zbl
[26] M. I. Dyachenko, S. Yu. Tikhonov, “Smoothness and asymptotic properties of functions with general monotone Fourier coefficients”, J. Fourier Anal. Appl., 24:4 (2018), 1072–1097 | DOI | MR | Zbl
[27] M. Dyachenko, E. Nursultanov, A. Kankenova, “On summability of Fourier coefficients of functions from Lebesgue space”, J. Math. Anal. Appl., 419:2 (2014), 959–971 | DOI | MR | Zbl
[28] M. I. Dyachenko, E. D. Nursultanov, A. M. Zhantakbayeva, “Hardy–Littlewood type theorems”, Eurasian Math. J., 4:2 (2013), 140–143 | MR | Zbl
[29] Z. Ditzian, V. H. Hristov, K. G. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0
1$”, Constr. Approx., 11:1 (1995), 67–83 | DOI | MR | Zbl[30] A. Zygmund, Trigonometric series, v. I, II, Cambridge Math. Lib., 3rd ed., Cambridge Univ. Press, New York, 2002, xiv+383 pp., viii+364 pp. | MR | MR | Zbl | Zbl
[31] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp. | MR | Zbl
[32] F. Dai, Z. Ditzian, S. Tikhonov, “Sharp Jackson inequalities”, J. Approx. Theory, 151:1 (2008), 86–112 | DOI | MR | Zbl
[33] A. A. Konyushkov, “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44(86):1 (1958), 53–84 | MR | Zbl
[34] M. Dyachenko, A. Mukanov, S. Tikhonov, “Hardy–Littlewood theorems for trigonometric series with general monotone coefficients”, Studia Math. (to appear)