@article{SM_2019_210_7_a1,
author = {A. A. Dosi},
title = {Quantum system structures of quantum spaces and entanglement breaking maps},
journal = {Sbornik. Mathematics},
pages = {928--993},
year = {2019},
volume = {210},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_7_a1/}
}
A. A. Dosi. Quantum system structures of quantum spaces and entanglement breaking maps. Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 928-993. http://geodesic.mathdoc.fr/item/SM_2019_210_7_a1/
[1] N. Burbaki, Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. ; N. Bourbaki, Éléments de mathématique. Première partie. (Fasc. II.) Livre III: Topologie générale. Ch. 1: Structures topologiques. Ch. 2: Structures uniformes, Actualités Sci. Indust., 1142, 3-éme éd., Hermann, Paris, 1961, 263 pp. ; Общая топология. Топологические группы. Числа и связанные с ними группы и пространства, 1969 ; Éléments de mathématique. Première partie. (Fasc. III.) Ch. 3: Groupes topologiques. Ch. 4: Nombres réels, Actualités Sci. Indust., 1143, 1960, 236 pp. ; N. Bourbaki, General topology. Chapters 1–4, Elem. Math. (Berlin), reprint of the 1966 ed., Springer-Verlag, Berlin, 1998, vii+437 с. | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[2] Man Duen Choi, E. G. Effros, “Injectivity and operator spaces”, J. Funct. Anal., 24:2 (1977), 156–209 | DOI | MR | Zbl
[3] Zizhen Chen, Zhongdan Huan, “On the continuity of the $m$th root of a continuous nonnegative definite matrix-valued function”, J. Math. Anal. Appl., 209:1 (1997), 60–66 | DOI | MR | Zbl
[4] A. Dosiev, “Local operator spaces, unbounded operators and multinormed $C^{\ast}$-algebras”, J. Funct. Anal., 255:7 (2008), 1724–1760 | DOI | MR | Zbl
[5] A. Dosi, “Local operator algebras, fractional positivity and the quantum moment problem”, Trans. Amer. Math. Soc., 363:2 (2011), 801–856 | DOI | MR | Zbl
[6] A. Dosi, “Quantum duality, unbounded operators, and inductive limits”, J. Math. Phys., 51:6 (2010), 063511, 43 pp. | DOI | MR | Zbl
[7] A. Dosi, “Noncommutative Mackey theorem”, Internat. J. Math., 22:4 (2011), 535–544 | DOI | MR | Zbl
[8] A. Dosi, “Quotients of quantum bornological spaces”, Taiwanese J. Math., 15:3 (2011), 1287–1303 | DOI | MR | Zbl
[9] A. Dosi, “Bipolar theorem for quantum cones”, Funct. Anal. Appl., 46:3 (2012), 228–231 | DOI | DOI | MR | Zbl
[10] A. Dosi, “Multinormed $W^{\ast}$-algebras and unbounded operators”, Proc. Amer. Math. Soc., 140:12 (2012), 4187–4202 | DOI | MR | Zbl
[11] A. Dosi, “Quantum cones and their duality”, Houston J. Math., 39:3 (2013), 853–887 | MR | Zbl
[12] A. Dosi, “Quantum systems and representation theorem”, Positivity, 17:3 (2013), 841–861 | DOI | MR | Zbl
[13] A. Dosi, “A survey on multinormed von Neumann algebras”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43:1 (2017), 3–67 | MR | Zbl
[14] A. Dosi, “Multinormed semifinite von Neumann algebras, unbounded operators and conditional expectations”, J. Math. Anal. Appl., 466:1 (2018), 573–608 | DOI | MR | Zbl
[15] E. G. Effros, Zhong-Jin Ruan, Operator spaces, London Math. Soc. Monogr. (N.S.), 23, Clarendon Press, Oxford Univ. Press, New York, 2000, xvi+363 pp. | MR | Zbl
[16] E. G. Effros, C. Webster, “Operator analogues of locally convex spaces”, Operator algebras and applications (Samos, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495, Kluwer Acad. Publ., Dordrecht, 1997, 163–207 | MR | Zbl
[17] E. G. Effros, S. Winkler, “Matrix convexity: operator analogues of the bipolar and Hahn–Banach theorems”, J. Funct. Anal., 144:1 (1997), 117–152 | DOI | MR | Zbl
[18] A. Ya. Helemskii, Quantum functional analysis. Non-coordinate approach, Univ. Lecture Ser., 56, Amer. Math. Soc., Providence, RI, 2010, xviii+241 pp. | DOI | MR | Zbl
[19] A. Ya. Helemskii, Banach and locally convex algebras, Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York, 1993, xvi+446 pp. | MR | MR | Zbl | Zbl
[20] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012, xiv+349 pp. | DOI | MR | Zbl
[21] H. Hogbe-Nlend, Bornologies and functional analysis. Introductory course on the theory of duality topology-bornology and its use in functional analysis, North-Holland Math. Stud., 26, Notas de Matemática, No. 62, North-Holland Publ. Co., Amsterdam–New York–Oxford, 1977, xii+144 pp. | MR | Zbl
[22] A. Kavruk, V. I. Paulsen, I. G. Todorov, M. Tomforde, “Tensor products of operator systems”, J. Func. Anal., 261:2 (2011), 267–299 | DOI | MR | Zbl
[23] A. S. Kavruk, V. I. Paulsen, I. G. Todorov, M. Tomforde, “Quotients, exactness, and nuclearity in the operator system category”, Adv. Math., 235 (2013), 321–360 | DOI | MR | Zbl
[24] S. S. Kutateladze, Fundamentals of functional analysis, Kluwer Texts Math. Sci., 12, Kluwer Acad. Publ., Dordrecht, 1996, xiv+276 pp. | DOI | MR | MR | Zbl | Zbl
[25] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990, x+286 pp. | MR | Zbl
[26] V. I. Paulsen, “The maximal operator space of a normed space”, Proc. Edinburgh Math. Soc. (2), 39:2 (1996), 309–323 | DOI | MR | Zbl
[27] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002, xii+300 pp. | DOI | MR | Zbl
[28] V. I. Paulsen, I. G. Todorov, M. Tomforde, “Operator system structures on ordered spaces”, Proc. Lond. Math. Soc. (3), 102:1 (2011), 25–49 | DOI | MR | Zbl
[29] V. I. Paulsen, M. Tomforde, “Vector spaces with an order unit”, Indiana Univ. Math. J., 58:3 (2009), 1319–1360 | DOI | MR | Zbl
[30] G. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003, viii+478 pp. | DOI | MR | Zbl
[31] H. H. Schaefer, Topological vector spaces, Grad. Texts in Math., 3, 3rd corr. printing, Springer-Verlag, New York–Berlin, 1971, xi+294 pp. | DOI | MR | MR | Zbl | Zbl
[32] M. Takesaki, Theory of operator algebras I, Encyclopaedia Math. Sci., 124, Oper. Alg. Non-commut. Geom., V, reprint of the 1979 ed., Springer-Verlag, Berlin, 2002, xx+415 pp. | MR | Zbl
[33] C. J. Webster, Local operator spaces and applications, Ph.D. thesis, Univ. California, Los Angeles, 1997, 135 pp. | MR
[34] T. P. Wihler, “On the Hölder continuity of matrix functions for normal matrices”, JIPAM. J. Inequal. Pure Appl. Math., 10:4 (2009), 91, 5 pp. | MR | Zbl