Quantum system structures of quantum spaces and entanglement breaking maps
Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 928-993
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the classification of quantum systems among the quantum spaces. In the normed case we obtain a complete solution to the problem when an operator space turns out to be an operator system. The min and max quantizations of a local order are described in terms of the min and max envelopes of the related state spaces. Finally, we characterize min-max-completely positive maps between Archimedean order unit spaces and investigate entanglement breaking maps in the general setting of quantum systems.
Bibliography: 34 titles.
Keywords:
quantum cone, quantum ball, operator systems, quantum systems, entanglement breaking mapping.
@article{SM_2019_210_7_a1,
author = {A. A. Dosi},
title = {Quantum system structures of quantum spaces and entanglement breaking maps},
journal = {Sbornik. Mathematics},
pages = {928--993},
publisher = {mathdoc},
volume = {210},
number = {7},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_7_a1/}
}
A. A. Dosi. Quantum system structures of quantum spaces and entanglement breaking maps. Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 928-993. http://geodesic.mathdoc.fr/item/SM_2019_210_7_a1/