The Pliś metric and Lipschitz stability of minimization problems
Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 911-927 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the metric introduced by Pliś on the set of convex closed bounded subsets of a Banach space. For a real Hilbert space it is proved that metric projection and (under certain conditions) metric antiprojection from a point onto a set satisfy a Lipschitz condition with respect to the set in the Pliś metric. It is proved that solutions of a broad class of minimization problems are also Lipschitz stable with respect to the set. Several examples are discussed. Bibliography: 18 titles.
Keywords: Pliś metric, Hausdorff metric, support function, strong convexity, Lipschitz continuous gradient.
@article{SM_2019_210_7_a0,
     author = {M. V. Balashov},
     title = {The {Pli\'s} metric and {Lipschitz} stability of minimization problems},
     journal = {Sbornik. Mathematics},
     pages = {911--927},
     year = {2019},
     volume = {210},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_7_a0/}
}
TY  - JOUR
AU  - M. V. Balashov
TI  - The Pliś metric and Lipschitz stability of minimization problems
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 911
EP  - 927
VL  - 210
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_7_a0/
LA  - en
ID  - SM_2019_210_7_a0
ER  - 
%0 Journal Article
%A M. V. Balashov
%T The Pliś metric and Lipschitz stability of minimization problems
%J Sbornik. Mathematics
%D 2019
%P 911-927
%V 210
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2019_210_7_a0/
%G en
%F SM_2019_210_7_a0
M. V. Balashov. The Pliś metric and Lipschitz stability of minimization problems. Sbornik. Mathematics, Tome 210 (2019) no. 7, pp. 911-927. http://geodesic.mathdoc.fr/item/SM_2019_210_7_a0/

[1] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 2-e izd., Fizmatlit, M., 2007, 438 pp. | Zbl

[2] D. Repovš, P. V. Semenov, Continuous selections of multivalued mappings, Math. Appl., 455, Kluwer Acad. Publ., Dordrecht, 1998, viii+356 pp. | DOI | MR | Zbl

[3] M. V. Balashov, G. E. Ivanov, “Properties of the metric projection on weakly vial-convex sets and parametrization of set-valued mappings with weakly convex images”, Math. Notes, 80:4 (2006), 461–467 | DOI | DOI | MR | Zbl

[4] J.-P. Aubin, I. Ekeland, Applied nonlinear analysis, A Wiley-Interscience Publication, Pure Appl. Math. (N. Y.), John Wiley Sons, Inc., New York, 1984, xi+518 pp. | MR | MR | Zbl

[5] A. Pliś, “Uniqueness of optimal trajectories for non-linear control systems”, Ann. Polon. Math., 29:4 (1975), 397–401 | DOI | MR | Zbl

[6] P. Diamond, P. Kloeden, A. Rubinov, A. Vladimirov, “Comparative properties of three metrics in the space of compact convex sets”, Set-Valued Anal., 5:3 (1997), 267–289 | DOI | MR | Zbl

[7] M. V. Balashov, D. Repovš, “On Pliś metric on the space of strictly convex compacta”, J. Convex Anal., 19:1 (2012), 171–183 | MR | Zbl

[8] V. V. Goncharov, G. E. Ivanov, “Strong and weak convexity of closed sets in a Hilbert space”, Operations research, engineering, and cyber security, Springer Optim. Appl., 113, Springer, Cham, 2017, 259–297 | DOI | MR | Zbl

[9] A. Ornelas, “Parametrization of Carathéodory multifunctions”, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33–44 | MR | Zbl

[10] G. E. Ivanov, Slabo vypuklye mnozhestva i funktsii: teoriya i prilozheniya, Fizmatlit, M., 2006, 352 pp. | Zbl

[11] M. V. Balashov, “Maximization of a function with Lipschitz continuous gradient”, J. Math. Sci. (N.Y.), 209:1 (2015), 12–18 | DOI | MR | Zbl

[12] A. Daniilidis, N. Hadjisavvas, “Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions”, J. Optim. Theory Appl., 102:3 (1999), 525–536 | DOI | MR | Zbl

[13] E. Hazan, K. Y. Levy, Sh. Shalev-Shwartz, “Beyond convexity: stochastic quasi-convex optimization”, NIPS'15 Proceedings of the 28th international conference on neural information processing systems (Montreal, 2015), v. 1, MIT Press, Cambridge, MA, 2015, 1594–1602

[14] P. Seiler, G. J. Balas, “Quasiconvex sum-of-squares programming”, 49th IEEE conference on decision and control (CDC) (Atlanta, 2010), IEEE, 2011, 3337–3342 | DOI

[15] E. S. Polovinkin, Mnogoznachnyi analiz i differentsialnye vklyucheniya, Fizmatlit, M., 2014, 522 pp.

[16] M. V. Balashov, G. E. Ivanov, “On farthest points of sets”, Math. Notes, 80:2 (2006), 159–166 | DOI | DOI | MR | Zbl

[17] M. V. Balashov, “Antidistance and antiprojection in the Hilbert space”, J. Convex Anal., 22:2 (2015), 521–536 | MR | Zbl

[18] J.-P. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl