Tur\'an, Fej\'er and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a~Sturm-Liouville problem
Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 809-835
Voir la notice de l'article provenant de la source Math-Net.Ru
The Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem on the Cartesian product of half-lines are solved under natural conditions on a weight function defined as a product of one-dimensional weight functions. Extremal functions are constructed. A multivariate Markov quadrature formula is proved based on the zeros of eigenfunctions of the Sturm-Liouville problem. This quadrature formula is shown to be sharp on entire multivariate functions of exponential type. A Paley-Wiener type theorem is proved for the multivariate Fourier transform. A weighted $L^2$-analogue of the Kotel'nikov-Nyquist-Whittaker-Shannon sampling theorem is put forward.
Bibliography: 42 titles.
Keywords:
Turán, Fejér and Bohman extremal problems
Mots-clés : Sturm-Liouville problem, Fourier transform, Gauss and Markov quadrature formulae.
Mots-clés : Sturm-Liouville problem, Fourier transform, Gauss and Markov quadrature formulae.
@article{SM_2019_210_6_a2,
author = {D. V. Gorbachev and V. I. Ivanov},
title = {Tur\'an, {Fej\'er} and {Bohman} extremal problems for the multivariate {Fourier} transform in terms of the eigenfunctions of {a~Sturm-Liouville} problem},
journal = {Sbornik. Mathematics},
pages = {809--835},
publisher = {mathdoc},
volume = {210},
number = {6},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_6_a2/}
}
TY - JOUR AU - D. V. Gorbachev AU - V. I. Ivanov TI - Tur\'an, Fej\'er and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a~Sturm-Liouville problem JO - Sbornik. Mathematics PY - 2019 SP - 809 EP - 835 VL - 210 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2019_210_6_a2/ LA - en ID - SM_2019_210_6_a2 ER -
%0 Journal Article %A D. V. Gorbachev %A V. I. Ivanov %T Tur\'an, Fej\'er and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a~Sturm-Liouville problem %J Sbornik. Mathematics %D 2019 %P 809-835 %V 210 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2019_210_6_a2/ %G en %F SM_2019_210_6_a2
D. V. Gorbachev; V. I. Ivanov. Tur\'an, Fej\'er and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a~Sturm-Liouville problem. Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 809-835. http://geodesic.mathdoc.fr/item/SM_2019_210_6_a2/