Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem
Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 809-835
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem on the Cartesian product of half-lines are solved under natural conditions on a weight function defined as a product of one-dimensional weight functions. Extremal functions are constructed. A multivariate Markov quadrature formula is proved based on the zeros of eigenfunctions of the Sturm-Liouville problem. This quadrature formula is shown to be sharp on entire multivariate functions of exponential type. A Paley-Wiener type theorem is proved for the multivariate Fourier transform. A weighted $L^2$-analogue of the Kotel'nikov-Nyquist-Whittaker-Shannon sampling theorem is put forward. Bibliography: 42 titles.
Keywords: Fejér and Bohman extremal problems
Mots-clés : Sturm-Liouville problem, Fourier transform, Turán, Gauss and Markov quadrature formulae.
@article{SM_2019_210_6_a2,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {Tur\'an, {Fej\'er} and {Bohman} extremal problems for the multivariate {Fourier} transform in terms of the eigenfunctions of {a~Sturm-Liouville} problem},
     journal = {Sbornik. Mathematics},
     pages = {809--835},
     year = {2019},
     volume = {210},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_6_a2/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 809
EP  - 835
VL  - 210
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_6_a2/
LA  - en
ID  - SM_2019_210_6_a2
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem
%J Sbornik. Mathematics
%D 2019
%P 809-835
%V 210
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2019_210_6_a2/
%G en
%F SM_2019_210_6_a2
D. V. Gorbachev; V. I. Ivanov. Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem. Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 809-835. http://geodesic.mathdoc.fr/item/SM_2019_210_6_a2/

[1] N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, 2, verb. Aufl., Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | MR | Zbl | Zbl

[2] E. E. Berdysheva, “Two related extremal problems for entire functions of several variables”, Math. Notes, 66:3 (1999), 271–282 | DOI | DOI | MR | Zbl

[3] R. A. Veprintsev, “Approximation of the multidimensional Jacobi transform in $L_2$ by partial integrals”, Math. Notes, 97:6 (2015), 831–845 | DOI | DOI | MR | Zbl

[4] D. V. Gorbachev, “Extremum problems for entire functions of exponential spherical type”, Math. Notes, 68:2 (2000), 159–166 | DOI | DOI | MR | Zbl

[5] D. V. Gorbachev, “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa, svyazannaya s otsenkoi Levenshteina plotnosti upakovki $\mathbb{R}^n$ sharami”, Izv. TulGU. Ser. Matem. Mekh. Inform., 6:1 (2000), 71–78 | MR

[6] D. V. Gorbachev, “Extremum problem for periodic functions supported in a ball”, Math. Notes, 69:3 (2001), 313–319 | DOI | DOI | MR | Zbl

[7] D. V. Gorbachev, A. S. Manoshina, “Turán extremal problem for periodic functions with small support and its applications”, Math. Notes, 76:5 (2004), 640–652 | DOI | DOI | MR | Zbl

[8] D. V. Gorbachev, “Ekstremalnaya zadacha Bomana dlya preobrazovaniya Fure–Gankelya”, Izv. TulGU. Estestv. nauki, 2014, no. 4, 5–10

[9] D. V. Gorbachev, V. I. Ivanov, “Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm–Liouville problem, which are exact for entire functions of exponential type”, Sb. Math., 206:8 (2015), 1087–1122 | DOI | DOI | MR | Zbl

[10] D. V. Gorbachev, V. I. Ivanov, “Bohman extremal problem for the Jacobi transform”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 88–96 | DOI | DOI | MR | Zbl

[11] D. V. Gorbachev, V. I. Ivanov, R. A. Veprintsev, “Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform over the eigenfunctions of the Sturm–Liouville operator”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 97–113 | DOI | DOI | MR | Zbl

[12] D. V. Gorbachev, V. I. Ivanov, “Nekotorye ekstremalnye zadachi dlya preobrazovaniya Fure po sobstvennym funktsiyam operatora Shturma–Liuvillya”, Chebyshevskii sb., 18:2 (2017), 34–53 | DOI | MR

[13] D. V. Gorbachev, V. I. Ivanov, E. P. Ofitserov, O. I. Smirnov, “Nekotorye ekstremalnye zadachi garmonicheskogo analiza i teorii priblizhenii”, Chebyshevskii sb., 18:4 (2017), 139–166 | DOI | MR

[14] V. I. Ivanov, Yu. D. Rudomazina, “On the Turán problem for periodic functions with nonnegative Fourier coefficients and small support”, Math. Notes, 77:6 (2005), 870–875 | DOI | DOI | MR | Zbl

[15] V. I. Ivanov, D. V. Gorbachev, Yu. D. Rudomazina, “Some extremal problems for periodic functions with conditions on their values and Fourier coefficients”, Proc. Steklov Inst. Math. (Suppl.), 2005, suppl. 2, S139–S159 | MR | Zbl

[16] V. I. Ivanov, “On the Turán and Delsarte problems for periodic positive definite functions”, Math. Notes, 80:6 (2006), 875–880 | DOI | DOI | MR | Zbl

[17] V. I. Ivanov, Lyu Yunpin, O. I. Smirnov, “O nekotorykh klassakh tselykh funktsii eksponentsialnogo tipa v prostranstvakh $L_p(\mathbb{R}^d)$ so stepennym vesom”, Izv. TulGU. Estestv. nauki, 2011, no. 2, 70–80

[18] V. I. Ivanov, Lyu Yunpin, O. I. Smirnov, “Nekotorye klassy tselykh funktsii eksponentsialnogo tipa v prostranstvakh $L_p(\mathbb{R}^d)$ so stepennym vesom”, Izv. TulGU. Estestv. nauki, 2014, no. 4, 26–34

[19] S. M. Nikol'ski{ĭ}, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | DOI | MR | MR | Zbl | Zbl

[20] N. B. Andersen, M. de Jeu, “Elementary proofs of Paley–Wiener theorems for the Dunkl transform on the real line”, Int. Math. Res. Not., 2005:30 (2005), 1817–1831 | DOI | MR | Zbl

[21] V. V. Arestov, E. E. Berdysheva, “The Turán problem for a class of polytopes”, East J. Approx., 8:3 (2002), 381–388 | MR | Zbl

[22] G. Bianchi, M. Kelly, “A Fourier analytic proof of the Blaschke–Santaló inequality”, Proc. Amer. Math. Soc., 143:11 (2015), 4901–4912 | DOI | MR | Zbl

[23] R. P. Boas, Jr., M. Kac, “Inequalities for Fourier transforms of positive functions”, Duke Math. J., 12 (1945), 189–206 | DOI | MR | Zbl

[24] H. Bohman, “Approximate Fourier analysis of distribution functions”, Ark. Mat., 4:2-3 (1961), 99–157 | DOI | MR | Zbl

[25] L. de Branges, Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1968, ix+326 pp. | MR | Zbl

[26] H. Cohn, “New upper bounds on sphere packings. II”, Geom. Topol., 6 (2002), 329–353 | DOI | MR | Zbl

[27] H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, M. Viazovska, “The sphere packing problem in dimension 24”, Ann. of Math. (2), 185:3 (2017), 1017–1033 | DOI | MR | Zbl

[28] W. Ehm, T. Gneiting, D. Richards, “Convolution roots of radial positive definite functions with compact support”, Trans. Amer. Math. Soc., 356:11 (2004), 4655–4685 | DOI | MR | Zbl

[29] C. Frappier, P. Olivier, “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60:201 (1993), 303–316 | DOI | MR | Zbl

[30] R. B. Ghanem, C. Frappier, “Explicit quadrature formulae for entire functions of exponential type”, J. Approx. Theory, 92:2 (1998), 267–279 | DOI | MR | Zbl

[31] D. V. Gorbachev, V. I. Ivanov, R. A. Veprintsev, “Optimal argument in the sharp Jackson's inequality in the space $L_2$ with hyperbolic weight”, Math. Notes, 96:6 (2014), 904–913 | DOI | MR | Zbl

[32] D. V. Gorbachev, V. I. Ivanov, O. I. Smirnov, “The Delsarte extremal problem for the Jacobi transform”, Math. Notes, 100:5 (2016), 677–686 | DOI | Zbl

[33] D. V. Gorbachev, V. I. Ivanov, O. I. Smirnov, “Some extremal problems for the Fourier transform on the hyperboloid”, Math. Notes, 102:4 (2017), 480–491 | DOI | MR | Zbl

[34] G. R. Grozev, Q. I. Rahman, “A quadrature formula with zeros of Bessel functions as nodes”, Math. Comp., 64:210 (1995), 715–725 | DOI | MR | Zbl

[35] V. I. Ivanov, A. V. Ivanov, “Turán problems for periodic positive definite functions”, Ann. Univ. Sci. Budapest. Sect. Comput., 33 (2010), 219–237 | MR | Zbl

[36] M. N. Kolountzakis, Sz. Gy. Révész, “On a problem of Turán about positive definite functions”, Proc. Amer. Math. Soc., 131:11 (2003), 3423–3430 | DOI | MR | Zbl

[37] M. N. Kolountzakis, Sz. Gy. Révész, “Turán's extremal problem for positive definite functions on groups”, J. London Math. Soc. (2), 74:2 (2006), 475–496 | DOI | MR | Zbl

[38] T. Koornwinder, “A new proof of a Paley–Wiener type theorem for the Jacobi transform”, Ark. Mat., 13:1-2 (1975), 145–159 | DOI | MR | Zbl

[39] B. F. Logan, “Extremal problems for positive-definite bandlimited functions. II. Eventually negative functions”, SIAM J. Math. Anal., 14:2 (1983), 253–257 | DOI | MR | Zbl

[40] Sz. Gy. Révész, “Turán's extremal problem on locally compact abelian groups”, Anal. Math., 37:1 (2011), 15–50 | DOI | MR | Zbl

[41] C. L. Siegel, “Über Gitterpunkte in convexen Körpern und ein damit zusammenhängendes Extremalproblem”, Acta Math., 65:1 (1935), 307–323 | DOI | MR | Zbl

[42] M. S. Viazovska, “The sphere packing problem in dimension 8”, Ann. of Math. (2), 185:3 (2017), 991–1015 | DOI | MR | Zbl