On changes of variable that preserve convergence and absolute convergence of Fourier-Haar series
Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 783-808
Voir la notice de l'article provenant de la source Math-Net.Ru
It is established that among all the differentiable homeomorphic changes of variable only the functions $\varphi_1(x)=x$ and $\varphi_2(x)=1-x$ for $x\in[0,1]$ preserve convergence everywhere of the Fourier-Haar series. The same is true for absolute convergence everywhere.
Bibliography: 8 titles.
Keywords:
Fourier-Haar series, changes of variable.
@article{SM_2019_210_6_a1,
author = {K. R. Bitsadze},
title = {On changes of variable that preserve convergence and absolute convergence of {Fourier-Haar} series},
journal = {Sbornik. Mathematics},
pages = {783--808},
publisher = {mathdoc},
volume = {210},
number = {6},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_6_a1/}
}
TY - JOUR AU - K. R. Bitsadze TI - On changes of variable that preserve convergence and absolute convergence of Fourier-Haar series JO - Sbornik. Mathematics PY - 2019 SP - 783 EP - 808 VL - 210 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2019_210_6_a1/ LA - en ID - SM_2019_210_6_a1 ER -
K. R. Bitsadze. On changes of variable that preserve convergence and absolute convergence of Fourier-Haar series. Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 783-808. http://geodesic.mathdoc.fr/item/SM_2019_210_6_a1/