On changes of variable that preserve convergence and absolute convergence of Fourier-Haar series
Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 783-808
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is established that among all the differentiable homeomorphic changes of variable only the functions $\varphi_1(x)=x$ and $\varphi_2(x)=1-x$ for $x\in[0,1]$ preserve convergence everywhere of the Fourier-Haar series. The same is true for absolute convergence everywhere. Bibliography: 8 titles.
Keywords: Fourier-Haar series, changes of variable.
@article{SM_2019_210_6_a1,
     author = {K. R. Bitsadze},
     title = {On changes of variable that preserve convergence and absolute convergence of {Fourier-Haar} series},
     journal = {Sbornik. Mathematics},
     pages = {783--808},
     year = {2019},
     volume = {210},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_6_a1/}
}
TY  - JOUR
AU  - K. R. Bitsadze
TI  - On changes of variable that preserve convergence and absolute convergence of Fourier-Haar series
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 783
EP  - 808
VL  - 210
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_6_a1/
LA  - en
ID  - SM_2019_210_6_a1
ER  - 
%0 Journal Article
%A K. R. Bitsadze
%T On changes of variable that preserve convergence and absolute convergence of Fourier-Haar series
%J Sbornik. Mathematics
%D 2019
%P 783-808
%V 210
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2019_210_6_a1/
%G en
%F SM_2019_210_6_a1
K. R. Bitsadze. On changes of variable that preserve convergence and absolute convergence of Fourier-Haar series. Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 783-808. http://geodesic.mathdoc.fr/item/SM_2019_210_6_a1/

[1] G. Aleksich, Problemy skhodimosti ortogonalnykh ryadov, IL, M., 1963, 359 pp. ; G. Alexits, Konvergenzprobleme der Orthogonalreihen, Verlag Ungarisch. Akad. Wiss., Budapest, 1960, 307 pp. ; Convergence problems of orthogonal series, Internat. Ser. Monogr. Pure Appl. Math., 20, Pergamon Press, New York–Oxford–Paris, 1961, ix+350 с. | MR | Zbl | MR | Zbl | MR | Zbl

[2] K. Bitsadze, “On changes of variable that preserve convergence and absolute convergence of Fourier–Haar series”, Bull. Georgian Acad. Sci., 159:2 (1999), 209–210 | MR | Zbl

[3] V. M. Bugadze, “On the Fourier–Haar series of composite functions”, Math. USSR-Sb., 72:1 (1992), 163–188 | DOI | MR | Zbl

[4] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[5] A. M. Olevskii, “Modifications of functions and Fourier series”, Russian Math. Surveys, 40:3 (1985), 181–224 | DOI | MR | Zbl

[6] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl

[7] P. L. Ul'yanov, “Absolute and uniform convergence of Fourier series”, Math. USSR-Sb., 1:2 (1967), 169–197 | DOI | MR | Zbl

[8] P. L. Ulyanov, “Absolyutnaya skhodimost ryadov Fure–Khaara ot superpozitsii funktsii”, Anal. Math., 4:3 (1978), 225–236 | DOI | MR | Zbl