A~smooth version of Johnson's problem on derivations of group algebras
Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 756-782

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of the algebra of outer derivations of the group algebra of a finitely presented discrete group in terms of the Cayley complex of the groupoid of the adjoint action of the group. This problem is a smooth version of Johnson's problem on derivations of a group algebra. We show that the algebra of outer derivations is isomorphic to the one-dimensional compactly supported cohomology group of the Cayley complex over the field of complex numbers. Bibliography: 34 titles.
Keywords: derivations, Cayley complexes, Hochschild cohomology.
Mots-clés : group algebras, groupoids
@article{SM_2019_210_6_a0,
     author = {A. A. Arutyunov and A. S. Mishchenko},
     title = {A~smooth version of {Johnson's} problem on derivations of group algebras},
     journal = {Sbornik. Mathematics},
     pages = {756--782},
     publisher = {mathdoc},
     volume = {210},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_6_a0/}
}
TY  - JOUR
AU  - A. A. Arutyunov
AU  - A. S. Mishchenko
TI  - A~smooth version of Johnson's problem on derivations of group algebras
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 756
EP  - 782
VL  - 210
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_6_a0/
LA  - en
ID  - SM_2019_210_6_a0
ER  - 
%0 Journal Article
%A A. A. Arutyunov
%A A. S. Mishchenko
%T A~smooth version of Johnson's problem on derivations of group algebras
%J Sbornik. Mathematics
%D 2019
%P 756-782
%V 210
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_6_a0/
%G en
%F SM_2019_210_6_a0
A. A. Arutyunov; A. S. Mishchenko. A~smooth version of Johnson's problem on derivations of group algebras. Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 756-782. http://geodesic.mathdoc.fr/item/SM_2019_210_6_a0/