A smooth version of Johnson's problem on derivations of group algebras
Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 756-782 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a description of the algebra of outer derivations of the group algebra of a finitely presented discrete group in terms of the Cayley complex of the groupoid of the adjoint action of the group. This problem is a smooth version of Johnson's problem on derivations of a group algebra. We show that the algebra of outer derivations is isomorphic to the one-dimensional compactly supported cohomology group of the Cayley complex over the field of complex numbers. Bibliography: 34 titles.
Keywords: derivations, Cayley complexes, Hochschild cohomology.
Mots-clés : group algebras, groupoids
@article{SM_2019_210_6_a0,
     author = {A. A. Arutyunov and A. S. Mishchenko},
     title = {A~smooth version of {Johnson's} problem on derivations of group algebras},
     journal = {Sbornik. Mathematics},
     pages = {756--782},
     year = {2019},
     volume = {210},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_6_a0/}
}
TY  - JOUR
AU  - A. A. Arutyunov
AU  - A. S. Mishchenko
TI  - A smooth version of Johnson's problem on derivations of group algebras
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 756
EP  - 782
VL  - 210
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_6_a0/
LA  - en
ID  - SM_2019_210_6_a0
ER  - 
%0 Journal Article
%A A. A. Arutyunov
%A A. S. Mishchenko
%T A smooth version of Johnson's problem on derivations of group algebras
%J Sbornik. Mathematics
%D 2019
%P 756-782
%V 210
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2019_210_6_a0/
%G en
%F SM_2019_210_6_a0
A. A. Arutyunov; A. S. Mishchenko. A smooth version of Johnson's problem on derivations of group algebras. Sbornik. Mathematics, Tome 210 (2019) no. 6, pp. 756-782. http://geodesic.mathdoc.fr/item/SM_2019_210_6_a0/

[1] B. E. Johnson, A. M. Sinclair, “Continuity of derivations and a problem of Kaplansky”, Amer. J. Math., 90:4 (1968), 1067–1073 | DOI | MR | Zbl

[2] B. E. Johnson, J. R. Ringrose, “Derivations of operator algebras and discrete group algebras”, Bull. London Math. Soc., 1 (1969), 70–74 | DOI | MR | Zbl

[3] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972, iii+96 pp. | MR | Zbl

[4] B. E. Johnson, “The derivation problem for group algebras of connected locally compact groups”, J. London Math. Soc. (2), 63:2 (2001), 441–452 | DOI | MR | Zbl

[5] V. Losert, “The derivation problem for group algebras”, Ann. of Math. (2), 168:1 (2008), 221–246 | DOI | MR | Zbl

[6] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monogr. (N.S.), 24, The Clarendon Press, Oxford Univ. Press, New York, 2000, xviii+907 pp. | MR | Zbl

[7] R. S. Pierce, Associative algebras, Grad. Texts in Math., 88, Stud. Hist. Modern Sci., 9, Springer-Verlag, New York–Berlin, 1982, xii+436 pp. | DOI | MR | MR | Zbl | Zbl

[8] C. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38, Reprint, Cambridge Univ. Press, Cambridge, 1997, xiv+450 pp. | DOI | MR | Zbl

[9] I. Kaplansky, “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl

[10] I. Kaplansky, “Derivations of Banach algebras”, Seminars on analytic functions, v. II, Princeton Univ. Press, Princeton, N.J., 1958, 254–258 | Zbl

[11] S. Sakai, “On a conjecture of Kaplansky”, Tôhoku Math. J. (2), 12 (1960), 31–33 | DOI | MR | Zbl

[12] S. Sakai, “Derivations of $W^{*}$-algebras”, Ann. of Math. (2), 83 (1966), 273–279 | DOI | MR | Zbl

[13] S. Sakai, “Derivations of simple $C^{*}$-algebras”, J. Functional Analysis, 2:2 (1968), 202–206 | DOI | MR | Zbl

[14] S. Sakai, $C^{*}$-algebras and $W^{*}$-algebras, Ergeb. Math. Grenzgeb., 60, Springer-Verlag, New York–Heidelberg, 1971, xii+253 pp. | DOI | MR | Zbl

[15] R. V. Kadison, “Derivations of operator algebras”, Ann. of Math. (2), 83:2 (1966), 280–293 | DOI | MR | Zbl

[16] R. V. Kadison, J. R. Ringrose, “Derivations of operator group algebras”, Amer. J. Math., 88:3 (1966), 562–576 | DOI | MR | Zbl

[17] B. Blackadar, J. Cuntz, “Differential Banach algebra norms and smooth subalgebras of $C^*$-algebras”, J. Operator Theory, 26:2 (1991), 255–282 | MR | Zbl

[18] V. Ginzburg, Letures on noncommutative geometry, arXiv: math/0506603

[19] A. Connes, “Non-commutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 62 (1985), 41–144 | DOI | MR | Zbl

[20] A. Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994, xiv+661 pp. | MR | Zbl

[21] A. Connes, H. Moscovici, “Cyclic cohomology, the Novikov conjecture and hyperbolic groups”, Topology, 29:3 (1990), 345–388 | DOI | MR | Zbl

[22] P. Jolissaint, “Rapidly decreasing functions in reduced $C^*$-algebras of groups”, Trans. Amer. Math. Soc., 317:1 (1990), 167–196 | DOI | MR | Zbl

[23] P. Jolissaint, “$K$-theory of reduced $C^*$-algebras and rapidly decreasing functions on groups”, K-Theory, 2:6 (1989), 723–735 | DOI | MR | Zbl

[24] P. de la Harpe, “Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint”, C. R. Acad. Sci. Paris Sér. I Math., 307:14 (1988), 771–774 | MR | Zbl

[25] A. V. Ershov, Kategorii i funktory, Uchebnoe posobie, Nauka, Saratov, 2012, 86 pp.

[26] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin–New York, 1977, xiv+339 pp. | DOI | MR | MR | Zbl | Zbl

[27] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979, xvii+203 pp. | MR | MR | Zbl | Zbl

[28] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Pure Appl. Math., 13, Interscience Publishers [John Wiley Sons, Inc.], New York–London–Sydney, 1966, xii+444 pp. | MR | MR | Zbl | Zbl

[29] D. J. Benson, Representations and cohomology, v. I, Cambridge Stud. Adv. Math., 30, Basic representation theory of finite groups and associative algebras, Cambridge Univ. Press, 1991, xii+224 pp. ; v. II, Cambridge Stud. Adv. Math., 31, Cohomology of groups and modules, x+278 pp. | MR | Zbl | MR | Zbl

[30] M. Gerstenhaber, “The cohomology structure of an associative ring”, Ann. of Math. (2), 78:2 (1963), 267–288 | DOI | MR | Zbl

[31] M. Kontsevich, “Operads and motives in deformation quantization”, Lett. Math. Phys., 48:1 (1999), 35–72 | DOI | MR | Zbl

[32] Y. Felix, J.-Cl. Thomas, M. Vigué-Poirrier, “The Hochschild cohomology of a closed manifold”, Publ. Math. Inst. Hautes Études Sci., 99 (2004), 235–252 | DOI | MR | Zbl

[33] A. A. Arutyunov, A. S. Mischenko, A. I. Shtern, “Derivatsii gruppovykh algebr”, Fundament. i prikl. matem., 21:6 (2016), 65–78 | MR

[34] A. A. Arutyunov, A. S. Mishchenko, Smooth version of Johnson's problem concerning derivations of group algebras, arXiv: 1801.03480