Admissible pairs vs Gieseker-Maruyama
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 731-755
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Morphisms between the moduli functor of admissible semistable pairs and the Gieseker-Maruyama moduli functor (of semistable coherent torsion-free sheaves) with the same Hilbert polynomial on the surface are constructed. It is shown that these functors are isomorphic, and the moduli scheme for semistable admissible pairs $((\widetilde S,\widetilde L),\widetilde E)$ is isomorphic to the Gieseker-Maruyama moduli scheme. All the components of moduli functors and corresponding moduli schemes which exist are looked at here. 
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
semistable coherent sheaves, semistable admissible pairs, vector bundles
Mots-clés : moduli space, algebraic surface.
                    
                  
                
                
                Mots-clés : moduli space, algebraic surface.
@article{SM_2019_210_5_a3,
     author = {N. V. Timofeeva},
     title = {Admissible pairs vs {Gieseker-Maruyama}},
     journal = {Sbornik. Mathematics},
     pages = {731--755},
     publisher = {mathdoc},
     volume = {210},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/}
}
                      
                      
                    N. V. Timofeeva. Admissible pairs vs Gieseker-Maruyama. Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 731-755. http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/
