Admissible pairs vs Gieseker-Maruyama
Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 731-755 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Morphisms between the moduli functor of admissible semistable pairs and the Gieseker-Maruyama moduli functor (of semistable coherent torsion-free sheaves) with the same Hilbert polynomial on the surface are constructed. It is shown that these functors are isomorphic, and the moduli scheme for semistable admissible pairs $((\widetilde S,\widetilde L),\widetilde E)$ is isomorphic to the Gieseker-Maruyama moduli scheme. All the components of moduli functors and corresponding moduli schemes which exist are looked at here. Bibliography: 16 titles.
Keywords: semistable coherent sheaves, semistable admissible pairs, vector bundles
Mots-clés : moduli space, algebraic surface.
@article{SM_2019_210_5_a3,
     author = {N. V. Timofeeva},
     title = {Admissible pairs vs {Gieseker-Maruyama}},
     journal = {Sbornik. Mathematics},
     pages = {731--755},
     year = {2019},
     volume = {210},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - Admissible pairs vs Gieseker-Maruyama
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 731
EP  - 755
VL  - 210
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/
LA  - en
ID  - SM_2019_210_5_a3
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T Admissible pairs vs Gieseker-Maruyama
%J Sbornik. Mathematics
%D 2019
%P 731-755
%V 210
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/
%G en
%F SM_2019_210_5_a3
N. V. Timofeeva. Admissible pairs vs Gieseker-Maruyama. Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 731-755. http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/

[1] N. V. Timofeeva, “A compactification of the moduli variety of stable vector 2-bundles on a surface in the Hilbert scheme”, Math. Notes, 82:5 (2007), 677–690 | DOI | DOI | MR | Zbl

[2] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | DOI | MR | Zbl

[3] N. V. Timofeeva, “On the new compactification of moduli of vector bundles on a surface. II”, Sb. Math., 200:3 (2009), 405–427 | DOI | DOI | MR | Zbl

[4] N. V. Timofeeva, “On degeneration of the surface in the Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90:1 (2011), 142–148 | DOI | DOI | MR | Zbl

[5] N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. III. Functorial approach”, Sb. Math., 202:3 (2011), 413–465 | DOI | DOI | MR | Zbl

[6] N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. IV. Nonreduced moduli”, Sb. Math., 204:1 (2013), 133–153 | DOI | DOI | MR | Zbl

[7] N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. V. Existence of a universal family”, Sb. Math., 204:3 (2013), 411–437 | DOI | DOI | MR | Zbl

[8] N. V. Timofeeva, “On a morphism of compactifications of moduli scheme of vector bundles”, Sib. elektron. matem. izv., 12 (2015), 577–591 | DOI | MR

[9] N. V. Timofeeva, “Izomorfizm kompaktifikatsii modulei vektornykh rassloenii: neprivedennye skhemy modulei”, Model. i analiz inform. sistem, 22:5 (2015), 629–647 | DOI | MR

[10] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Ann. of Math. (2), 106:1 (1977), 45–60 | DOI | MR | Zbl

[11] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., E31, Friedr. Vieweg Sohn, Braunschweig, 1997, xiv+269 pp. | MR | Zbl

[12] A. Grothendieck, “Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents (première partie)”, Inst. Hautes Études Sci. Publ. Math., 11 (1961), 81–159 | DOI | MR | Zbl

[13] M. Raynaud, L. Gruson, “Critères de platitude et de projectivité. Techniques de “platification” d'un module”, Invent. Math., 13:1-2 (1971), 1–89 | DOI | MR | Zbl

[14] A. Grothendieck, J. A. Dieudonné, Eléments de géométrie algébrique. I, Grundlehren Math. Wiss., 166, Springer-Verlag, Berlin, 1971, ix+466 pp. | MR | Zbl

[15] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980, xiii+323 pp. | MR | MR | Zbl | Zbl

[16] N. V. Timofeeva, “Infinitesimal criterion for flatness of projective morphism of schemes”, St. Petersburg Math. J., 26:1 (2015), 131–138 | DOI | MR | Zbl