Admissible pairs vs Gieseker-Maruyama
Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 731-755

Voir la notice de l'article provenant de la source Math-Net.Ru

Morphisms between the moduli functor of admissible semistable pairs and the Gieseker-Maruyama moduli functor (of semistable coherent torsion-free sheaves) with the same Hilbert polynomial on the surface are constructed. It is shown that these functors are isomorphic, and the moduli scheme for semistable admissible pairs $((\widetilde S,\widetilde L),\widetilde E)$ is isomorphic to the Gieseker-Maruyama moduli scheme. All the components of moduli functors and corresponding moduli schemes which exist are looked at here. Bibliography: 16 titles.
Keywords: semistable coherent sheaves, semistable admissible pairs, vector bundles
Mots-clés : moduli space, algebraic surface.
@article{SM_2019_210_5_a3,
     author = {N. V. Timofeeva},
     title = {Admissible pairs vs {Gieseker-Maruyama}},
     journal = {Sbornik. Mathematics},
     pages = {731--755},
     publisher = {mathdoc},
     volume = {210},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - Admissible pairs vs Gieseker-Maruyama
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 731
EP  - 755
VL  - 210
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/
LA  - en
ID  - SM_2019_210_5_a3
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T Admissible pairs vs Gieseker-Maruyama
%J Sbornik. Mathematics
%D 2019
%P 731-755
%V 210
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/
%G en
%F SM_2019_210_5_a3
N. V. Timofeeva. Admissible pairs vs Gieseker-Maruyama. Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 731-755. http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/