Mots-clés : moduli space, algebraic surface.
@article{SM_2019_210_5_a3,
author = {N. V. Timofeeva},
title = {Admissible pairs vs {Gieseker-Maruyama}},
journal = {Sbornik. Mathematics},
pages = {731--755},
year = {2019},
volume = {210},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/}
}
N. V. Timofeeva. Admissible pairs vs Gieseker-Maruyama. Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 731-755. http://geodesic.mathdoc.fr/item/SM_2019_210_5_a3/
[1] N. V. Timofeeva, “A compactification of the moduli variety of stable vector 2-bundles on a surface in the Hilbert scheme”, Math. Notes, 82:5 (2007), 677–690 | DOI | DOI | MR | Zbl
[2] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | DOI | MR | Zbl
[3] N. V. Timofeeva, “On the new compactification of moduli of vector bundles on a surface. II”, Sb. Math., 200:3 (2009), 405–427 | DOI | DOI | MR | Zbl
[4] N. V. Timofeeva, “On degeneration of the surface in the Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90:1 (2011), 142–148 | DOI | DOI | MR | Zbl
[5] N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. III. Functorial approach”, Sb. Math., 202:3 (2011), 413–465 | DOI | DOI | MR | Zbl
[6] N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. IV. Nonreduced moduli”, Sb. Math., 204:1 (2013), 133–153 | DOI | DOI | MR | Zbl
[7] N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. V. Existence of a universal family”, Sb. Math., 204:3 (2013), 411–437 | DOI | DOI | MR | Zbl
[8] N. V. Timofeeva, “On a morphism of compactifications of moduli scheme of vector bundles”, Sib. elektron. matem. izv., 12 (2015), 577–591 | DOI | MR
[9] N. V. Timofeeva, “Izomorfizm kompaktifikatsii modulei vektornykh rassloenii: neprivedennye skhemy modulei”, Model. i analiz inform. sistem, 22:5 (2015), 629–647 | DOI | MR
[10] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Ann. of Math. (2), 106:1 (1977), 45–60 | DOI | MR | Zbl
[11] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., E31, Friedr. Vieweg Sohn, Braunschweig, 1997, xiv+269 pp. | MR | Zbl
[12] A. Grothendieck, “Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents (première partie)”, Inst. Hautes Études Sci. Publ. Math., 11 (1961), 81–159 | DOI | MR | Zbl
[13] M. Raynaud, L. Gruson, “Critères de platitude et de projectivité. Techniques de “platification” d'un module”, Invent. Math., 13:1-2 (1971), 1–89 | DOI | MR | Zbl
[14] A. Grothendieck, J. A. Dieudonné, Eléments de géométrie algébrique. I, Grundlehren Math. Wiss., 166, Springer-Verlag, Berlin, 1971, ix+466 pp. | MR | Zbl
[15] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980, xiii+323 pp. | MR | MR | Zbl | Zbl
[16] N. V. Timofeeva, “Infinitesimal criterion for flatness of projective morphism of schemes”, St. Petersburg Math. J., 26:1 (2015), 131–138 | DOI | MR | Zbl