Besov classes on finite and infinite dimensional spaces
Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 663-692

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an equivalent description of Besov spaces in terms of a new modulus of continuity. Then we use a similar approach to introduce Besov classes on an infinite-dimensional space endowed with a Gaussian measure. Bibliography: 25 titles.
Keywords: embedding theorem, Gaussian measure, Ornstein-Uhlenbeck semigroup.
Mots-clés : Besov space
@article{SM_2019_210_5_a1,
     author = {E. D. Kosov},
     title = {Besov classes on finite and infinite dimensional spaces},
     journal = {Sbornik. Mathematics},
     pages = {663--692},
     publisher = {mathdoc},
     volume = {210},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_5_a1/}
}
TY  - JOUR
AU  - E. D. Kosov
TI  - Besov classes on finite and infinite dimensional spaces
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 663
EP  - 692
VL  - 210
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_5_a1/
LA  - en
ID  - SM_2019_210_5_a1
ER  - 
%0 Journal Article
%A E. D. Kosov
%T Besov classes on finite and infinite dimensional spaces
%J Sbornik. Mathematics
%D 2019
%P 663-692
%V 210
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_5_a1/
%G en
%F SM_2019_210_5_a1
E. D. Kosov. Besov classes on finite and infinite dimensional spaces. Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 663-692. http://geodesic.mathdoc.fr/item/SM_2019_210_5_a1/