Besov classes on finite and infinite dimensional spaces
Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 663-692 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give an equivalent description of Besov spaces in terms of a new modulus of continuity. Then we use a similar approach to introduce Besov classes on an infinite-dimensional space endowed with a Gaussian measure. Bibliography: 25 titles.
Keywords: embedding theorem, Gaussian measure, Ornstein-Uhlenbeck semigroup.
Mots-clés : Besov space
@article{SM_2019_210_5_a1,
     author = {E. D. Kosov},
     title = {Besov classes on finite and infinite dimensional spaces},
     journal = {Sbornik. Mathematics},
     pages = {663--692},
     year = {2019},
     volume = {210},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_5_a1/}
}
TY  - JOUR
AU  - E. D. Kosov
TI  - Besov classes on finite and infinite dimensional spaces
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 663
EP  - 692
VL  - 210
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_5_a1/
LA  - en
ID  - SM_2019_210_5_a1
ER  - 
%0 Journal Article
%A E. D. Kosov
%T Besov classes on finite and infinite dimensional spaces
%J Sbornik. Mathematics
%D 2019
%P 663-692
%V 210
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2019_210_5_a1/
%G en
%F SM_2019_210_5_a1
E. D. Kosov. Besov classes on finite and infinite dimensional spaces. Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 663-692. http://geodesic.mathdoc.fr/item/SM_2019_210_5_a1/

[1] V. I. Bogachev, E. D. Kosov, S. N. Popova, A new approach to the Nikolskii–Besov classes, arXiv: 1707.06477

[2] V. I. Bogachev, E. D. Kosov, S. N. Popova, “A characterization of Nikolskii–Besov classes via integration by parts”, Dokl. Math., 96:2 (2017), 449–453 | DOI | DOI | MR | Zbl

[3] V. I. Bogachev, E. D. Kosov, S. N. Popova, “On Gaussian Nikolskii–Besov classes”, Dokl. Math., 96:2 (2017), 498–502 | DOI | DOI | MR | Zbl

[4] E. D. Kosov, “A characterization of Besov classes in terms of a new modulus of continuity”, Dokl. Math., 96:3 (2017), 587–590 | DOI | DOI | MR | Zbl

[5] E. D. Kosov, “Besov classes on a space with a Gaussian measure”, Dokl. Math., 97:1 (2018), 20–22 | DOI | DOI | Zbl

[6] E. D. Kosov, “Fractional smoothness of images of logarithmically concave measures under polynomials”, J. Math. Anal. Appl., 462:1 (2018), 390–406 | DOI | MR | Zbl

[7] V. I. Bogachev, E. D. Kosov, G. I. Zelenov, “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432 | DOI | MR | Zbl

[8] V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749 | DOI | DOI | MR | Zbl

[9] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, v. I, II, Scripta Series in Mathematics, V. H. Winston Sons, Washington, D.C.; Halsted Press [John Wiley Sons], New York–Toronto, ON–London, 1978, 1979, viii+345 pp., viii+311 pp. | MR | MR | MR | Zbl | Zbl

[10] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | DOI | MR | MR | Zbl | Zbl

[11] H. Triebel, Theory of function spaces, v. II, Monogr. Math., 84, Birkhäuser Verlag, Basel, 1992, viii+370 pp. | DOI | MR | Zbl

[12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl

[13] L. Ambrosio, M. Miranda Jr., D. Pallara, “Some fine properties of BV functions on Wiener spaces”, Anal. Geom. Metr. Spaces, 3:1 (2015), 212–230 | DOI | MR | Zbl

[14] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl

[15] M. Ledoux, “Concentration of measure and logarithmic Sobolev inequalities”, Séminaire de Probabilités XXXIII, Lecture Notes in Math., 1709, Springer, Berlin, 1999, 120–216 | DOI | MR | Zbl

[16] M. Ledoux, “Isoperimetry and Gaussian analysis”, Lectures on probability theory and statistics (Saint-Flour, 1994), Lecture Notes in Math., 1648, Springer, Berlin, 1996, 165–294 | DOI | MR | Zbl

[17] M. Fukushima, M. Hino, “On the space of BV functions and a related stochastic calculus in infinite dimensions”, J. Funct. Anal., 183:1 (2001), 245–268 | DOI | MR | Zbl

[18] M. Ledoux, “Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space”, Bull. Sci. Math., 118:6 (1994), 485–510 | MR | Zbl

[19] E. Pineda, W. Urbina, “Some results on Gaussian Besov–Lipschitz spaces and Gaussian Triebel–Lizorkin spaces”, J. Approx. Theory, 161:2 (2009), 529–564 | DOI | MR | Zbl

[20] V. I. Koljada, “On imbedding in classes $\varphi(L)$”, Math. USSR-Izv., 9:2 (1975), 395–413 | DOI | MR | Zbl

[21] V. I. Kolyada, “Estimates of rearrangements and imbedding theorems”, Math. USSR-Sb., 64:1 (1989), 1–21 | DOI | MR | Zbl

[22] P. L. Ul'janov, “The imbedding of certain function classes $H_p^\omega$”, Math. USSR-Izv., 2:3 (1968), 601–637 | DOI | MR | Zbl

[23] P. L. Ul'janov, “Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics”, Math. USSR-Sb., 10:1 (1970), 103–126 | DOI | MR | Zbl

[24] V. I. Kolyada, “Rearrangements of functions and embedding theorems”, Russian Math. Surveys, 44:5 (1989), 73–117 | DOI | MR | Zbl

[25] V. I. Bogachev, “Ornstein–Uhlenbeck operators and semigroups”, Russian Math. Surveys, 73:2 (2018), 191–260 | DOI | DOI | MR | Zbl