Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$
Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 625-662

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the topology of the Liouville foliation in the analogue of the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$. The Fomenko-Zieschang invariants (that is, marked molecules) for this foliation are calculated on each nonsingular iso-energy surface. A detailed description of the resulting stratification of the three-dimensional space of parameters of the iso-energy surfaces is given. Bibliography: 23 titles.
Keywords: integrable Hamiltonian systems, Kovalevskaya case, bifurcation diagram, topological invariants
Mots-clés : Liouville foliation, Fomenko-Zieschang invariant.
@article{SM_2019_210_5_a0,
     author = {V. A. Kibkalo},
     title = {Topological classification of {Liouville} foliations for the {Kovalevskaya} integrable case on the {Lie} algebra $\operatorname{so}(4)$},
     journal = {Sbornik. Mathematics},
     pages = {625--662},
     publisher = {mathdoc},
     volume = {210},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_5_a0/}
}
TY  - JOUR
AU  - V. A. Kibkalo
TI  - Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 625
EP  - 662
VL  - 210
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_5_a0/
LA  - en
ID  - SM_2019_210_5_a0
ER  - 
%0 Journal Article
%A V. A. Kibkalo
%T Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$
%J Sbornik. Mathematics
%D 2019
%P 625-662
%V 210
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_5_a0/
%G en
%F SM_2019_210_5_a0
V. A. Kibkalo. Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$. Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 625-662. http://geodesic.mathdoc.fr/item/SM_2019_210_5_a0/