Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$
Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 625-662 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the topology of the Liouville foliation in the analogue of the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$. The Fomenko-Zieschang invariants (that is, marked molecules) for this foliation are calculated on each nonsingular iso-energy surface. A detailed description of the resulting stratification of the three-dimensional space of parameters of the iso-energy surfaces is given. Bibliography: 23 titles.
Keywords: integrable Hamiltonian systems, Kovalevskaya case, bifurcation diagram, topological invariants
Mots-clés : Liouville foliation, Fomenko-Zieschang invariant.
@article{SM_2019_210_5_a0,
     author = {V. A. Kibkalo},
     title = {Topological classification of {Liouville} foliations for the {Kovalevskaya} integrable case on the {Lie} algebra $\operatorname{so}(4)$},
     journal = {Sbornik. Mathematics},
     pages = {625--662},
     year = {2019},
     volume = {210},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_5_a0/}
}
TY  - JOUR
AU  - V. A. Kibkalo
TI  - Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 625
EP  - 662
VL  - 210
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_5_a0/
LA  - en
ID  - SM_2019_210_5_a0
ER  - 
%0 Journal Article
%A V. A. Kibkalo
%T Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$
%J Sbornik. Mathematics
%D 2019
%P 625-662
%V 210
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2019_210_5_a0/
%G en
%F SM_2019_210_5_a0
V. A. Kibkalo. Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$. Sbornik. Mathematics, Tome 210 (2019) no. 5, pp. 625-662. http://geodesic.mathdoc.fr/item/SM_2019_210_5_a0/

[1] S. Kowalevski, “Sur le probl{e}me de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232 | DOI | MR | Zbl

[2] I. V. Komarov, “Kowalewski basis for the hydrogen atom”, Theoret. and Math. Phys., 47:1 (1981), 320–324 | DOI | MR

[3] I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra $\mathrm{so}(4)$”, Sb. Math., 205:4 (2014), 532–572 | DOI | DOI | MR | Zbl

[4] G. G. Appelrot, “Ne vpolne simmetrichnye tyazhelye giroskopy”, Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki, Izd-vo AN SSSR, M.–L., 1940, 61–156

[5] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of the rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl

[6] M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem”, J. Appl. Math. Mech., 47 (1983):6 (1985), 737–743 | DOI | MR | Zbl

[7] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988, 200 pp. | MR

[8] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[9] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl

[10] E. A. Kudryavtseva, A. T. Fomenko, “Symmetries groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl

[11] A. T. Fomenko, A. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl

[12] A. T. Fomenko, S. S. Nikolaenko, “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133 | DOI | MR | Zbl

[13] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | DOI | MR | Zbl

[14] V. V. Vedyushkina, A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl

[15] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[16] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[17] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | DOI | MR | Zbl

[18] P. V. Morozov, “Calculation of the Fomenko–Zieschang invariants in the Kovalevskaya–Yehia integrable case”, Sb. Math., 198:8 (2007), 1119–1143 | DOI | DOI | MR | Zbl

[19] N. S. Slavina, “Topological classification of systems of Kovalevskaya–Yehia type”, Sb. Math., 205:1 (2014), 101–155 | DOI | DOI | MR | Zbl

[20] P. V. Morozov, “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | DOI | MR | Zbl

[21] P. V. Morozov, “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | DOI | MR | Zbl

[22] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl

[23] V. Kibkalo, “Topological analysis of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra $\mathrm{so}(4)$”, Lobachevskii J. Math., 39:9 (2018), 1396–1399 | DOI | MR | Zbl