On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers
Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 589-605

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an upper bound for the exponent of the simultaneous approximation of $\ln3$ and $\pi/\sqrt3$ by rational numbers. Bibliography: 16 titles.
Keywords: irrationality measure, simultaneous approximations.
@article{SM_2019_210_4_a5,
     author = {A. A. Polyanskii},
     title = {On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers},
     journal = {Sbornik. Mathematics},
     pages = {589--605},
     publisher = {mathdoc},
     volume = {210},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a5/}
}
TY  - JOUR
AU  - A. A. Polyanskii
TI  - On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 589
EP  - 605
VL  - 210
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_4_a5/
LA  - en
ID  - SM_2019_210_4_a5
ER  - 
%0 Journal Article
%A A. A. Polyanskii
%T On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers
%J Sbornik. Mathematics
%D 2019
%P 589-605
%V 210
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_4_a5/
%G en
%F SM_2019_210_4_a5
A. A. Polyanskii. On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 589-605. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a5/