On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers
Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 589-605
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove an upper bound for the exponent of the simultaneous approximation of $\ln3$ and $\pi/\sqrt3$ by rational numbers. Bibliography: 16 titles.
Keywords: irrationality measure, simultaneous approximations.
@article{SM_2019_210_4_a5,
     author = {A. A. Polyanskii},
     title = {On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers},
     journal = {Sbornik. Mathematics},
     pages = {589--605},
     year = {2019},
     volume = {210},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a5/}
}
TY  - JOUR
AU  - A. A. Polyanskii
TI  - On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 589
EP  - 605
VL  - 210
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_4_a5/
LA  - en
ID  - SM_2019_210_4_a5
ER  - 
%0 Journal Article
%A A. A. Polyanskii
%T On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers
%J Sbornik. Mathematics
%D 2019
%P 589-605
%V 210
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2019_210_4_a5/
%G en
%F SM_2019_210_4_a5
A. A. Polyanskii. On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 589-605. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a5/

[1] L. V. Danilov, “Rational approximations of some functions at rational points”, Math. Notes, 24:4 (1978), 741–746 | DOI | MR | Zbl

[2] V. A. Androsenko, “Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$”, Izv. Math., 79:1 (2015), 1–17 | DOI | DOI | MR | Zbl

[3] G. Rhin, “Approximants de Padé et mesures effectives d'irrationalité”, Séminaire de théorie des nombres, Paris 1985–86, Progr. Math., 71, Birkhäuser Boston, Boston, MA, 1987, 155–164 | DOI | MR | Zbl

[4] Qiang Wu, Lihong Wang, “On the irrationality measure of $\log 3$”, J. Number Theory, 142 (2014), 264–273 | DOI | MR | Zbl

[5] V. Kh. Salikhov, “On the irrationality measure of $ \ln 3$”, Dokl. Math., 76:3 (2007), 955–957 | DOI | MR | Zbl

[6] Yu. V. Nesterenko, “On the irrationality exponent of the number $\ln 2$”, Math. Notes, 88:4 (2010), 530–543 | DOI | DOI | MR | Zbl

[7] M. G. Bashmakova, “Estimates for the exponent of irrationality for certain values of hypergeometric functions”, Mosc. J. Comb. Number Theory, 1:1 (2011), 67–78 | MR | Zbl

[8] A. A. Polyanskii, “Square exponent of irrationality of $\ln 2$”, Moscow Univ. Math. Bull., 67:1 (2012), 23–28 | DOI | MR | Zbl

[9] A. Polyanskii, “On the irrationality measure of certain numbers”, Mosc. J. Comb. Number Theory, 1:4 (2011), 80–90 | MR | Zbl

[10] A. A. Polyanskii, “Quadratic irrationality exponents of certain numbers”, Moscow Univ. Math. Bull., 68:5 (2013), 237–240 | DOI | MR | Zbl

[11] A. A. Polyanskii, “On the irrationality measures of certain numbers. II”, Math. Notes, 103:4 (2018), 626–634 | DOI | DOI | MR | Zbl

[12] R. Marcovecchio, “The Rhin–Viola method for $\log 2$”, Acta Arith., 139:2 (2009), 147–184 | DOI | MR | Zbl

[13] E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl

[14] A. A. Polyanskii, Kompyuternye vychisleniya, 2017 http://polyanskii.com/wp-content/uploads/number-theory/sim-approximations.nb

[15] A. A. Polyanskii, O pokazatelyakh irratsionalnosti nekotorykh chisel, Diss. ... kand. fiz.-matem. nauk, MGU, mekh.-matem. fak-t, M., 2013, 138 pp. http://polyanskii.com/wp-content/uploads/thesis/polyanskii-phd.pdf

[16] M. Hata, “Rational approximations to $\pi$ and some other numbers”, Acta Arith., 63:4 (1993), 335–349 | DOI | MR | Zbl