On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers
Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 589-605
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove an upper bound for the exponent of the simultaneous approximation of $\ln3$ and $\pi/\sqrt3$ by rational numbers.
Bibliography: 16 titles.
Keywords:
irrationality measure, simultaneous approximations.
@article{SM_2019_210_4_a5,
author = {A. A. Polyanskii},
title = {On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers},
journal = {Sbornik. Mathematics},
pages = {589--605},
publisher = {mathdoc},
volume = {210},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a5/}
}
A. A. Polyanskii. On simultaneous approximations of $\ln3$ and $\pi/\sqrt3$ by rational numbers. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 589-605. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a5/