Mots-clés : affine dependence of the diffusion coefficients.
@article{SM_2019_210_4_a4,
author = {Dinh D\~{u}ng},
title = {Linear collective collocation approximation for parametric and stochastic elliptic {PDEs}},
journal = {Sbornik. Mathematics},
pages = {565--588},
year = {2019},
volume = {210},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_4_a4/}
}
Dinh Dũng. Linear collective collocation approximation for parametric and stochastic elliptic PDEs. Sbornik. Mathematics, Tome 210 (2019) no. 4, pp. 565-588. http://geodesic.mathdoc.fr/item/SM_2019_210_4_a4/
[1] I. Babuška, F. Nobile, R. Tempone, “A stochastic collocation method for elliptic partial differential equations with random input data”, SIAM J. Numer. Anal., 45:3 (2007), 1005–1034 | DOI | MR | Zbl
[2] M. Bachmayr, A. Cohen, G. Migliorati, “Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients”, ESAIM Math. Model. Numer. Anal., 51:1 (2017), 321–339 | DOI | MR | Zbl
[3] M. Bachmayr, A. Cohen, Dinh Dũng, Ch. Schwab, “Fully discrete approximation of parametric and stochastic elliptic PDEs”, SIAM J. Numer. Anal., 55:5 (2017), 2151–2186 | DOI | MR | Zbl
[4] J. Beck, R. Tempone, F. Nobile, L. Tamellini, “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods”, Math. Models Methods Appl. Sci., 22:9 (2012), 1250023, 33 pp. ; MOX rep. 23/2011, Politechnico di Milano, Milano, 2011, 38 pp. https://mox.polimi.it/publication-results/?id=2998&tipo=add_qmox | DOI | MR | Zbl
[5] J. Céa, “Approximation variationnelle des problèmes aux limites”, Ann. Inst. Fourier (Grenoble), 14:2 (1964), 345–444 | DOI | MR | Zbl
[6] M. A. Chkifa, “On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection”, J. Approx. Theory, 166 (2013), 176–200 | DOI | MR | Zbl
[7] A. Chkifa, A. Cohen, R. DeVore, Ch. Schwab, “Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs”, ESAIM Math. Model. Numer. Anal., 47:1 (2013), 253–280 | DOI | MR | Zbl
[8] A. Chkifa, A. Cohen, Ch. Schwab, “High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs”, Found. Comput. Math., 14:4 (2014), 601–633 | DOI | MR | Zbl
[9] A. Cohen, R. DeVore, “Approximation of high-dimensional parametric PDEs”, Acta Numer., 24 (2015), 1–159 | DOI | MR | Zbl
[10] A. Cohen, R. DeVore, Ch. Schwab, “Convergence rates of best $N$-term Galerkin approximations for a class of elliptic sPDEs”, Found. Comput. Math., 10:6 (2010), 615–646 | DOI | MR | Zbl
[11] A. Cohen, R. DeVore, Ch. Schwab, “Analytic regularity and polynomial approximation of parametric and stochastic PDE's”, Anal. Appl. (Singap.), 9:1 (2011), 11–47 | DOI | MR | Zbl
[12] Dinh Dũng, Linear collective collocation and Galerkin approximations for parametric and stochastic elliptic PDEs, arXiv: 1511.03377
[13] Dinh Dũng, M. Griebel, “Hyperbolic cross approximation in infinite dimensions”, J. Complexity, 33 (2016), 55–88 | DOI | MR | Zbl
[14] Dinh Dũng, M. Griebel, Vu Nhat Huy, C. Rieger, “$\varepsilon$-dimension in infinite dimensional hyperbolic cross approximation and application to parametric elliptic PDEs”, J. Complexity, 46 (2018), 66–89 | DOI | MR | Zbl
[15] H. C. Elman, C. W. Miller, E. T. Phipps, R. S. Tuminaro, “Assessment of collocation and Galerkin approaches to linear diffusion equations with random data”, Int. J. Uncertain. Quantif., 1:1 (2011), 19–33 | DOI | MR | Zbl
[16] M. D. Gunzburger, C. G. Webster, Guannan Zang, “Stochastic finite element methods for partial differential equations with random input data”, Acta Numer., 23 (2014), 521–650 | DOI | MR | Zbl
[17] P. D. Lax, A. N. Milgram, “Parabolic equations”, Contributions to the theory of partial differential equations, Ann. of Math. Stud., 33, Princeton Univ. Press, Princeton, N.J., 1954, 167–190 | MR | Zbl
[18] G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone, “Analysis of the discrete $L^2$ projection on polynomial spaces with random evaluations”, Found. Comput. Math., 14:3 (2014), 419–456 ; MOX rep. 46/2011, Politechnico di Milano, Milano, 2011, 38 pp. https://mox.polimi.it/publication-results/?id=322&tipo=add_qmox | DOI | MR | Zbl
[19] F. Nobile, R. Tempone, C. G. Webster, “A sparse grid stochastic collocation method for partial differential equations with random input data”, SIAM J. Numer. Anal., 46:5 (2008), 2309–2345 | DOI | MR | Zbl
[20] F. Nobile, R. Tempone, C. G. Webster, “An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data”, SIAM J. Numer. Anal., 46:5 (2008), 2411–2442 | DOI | MR | Zbl
[21] Ch. Schwab, C. G. Gittelson, “Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs”, Acta Numer., 20 (2011), 291–467 | DOI | MR | Zbl
[22] J. Zech, Dinh Dũng, Ch. Schwab, Multilevel approximation of parametric and stochastic PDEs, Res. rep. No. 2018-05, Seminar for Appied Mathematics, ETH, Zürich, 2018, 56 pp. https://www.math.ethz.ch/sam/research/reports.html