An analogue of Schur--Weyl duality for the unitary group of a~$\mathrm{II}_1$-factor
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 447-472
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An analogue of the classical Schur–Weyl duality is found for the unitary group of an arbitrary $\mathrm{II}_1$-factor. 
Bibliography: 20 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
unitary group of a von Neumann factor, Schur–Weyl duality, factor representation, quasi-equivalent representations.
                    
                    
                    
                  
                
                
                @article{SM_2019_210_3_a4,
     author = {N. I. Nessonov},
     title = {An analogue of {Schur--Weyl} duality for the unitary group of a~$\mathrm{II}_1$-factor},
     journal = {Sbornik. Mathematics},
     pages = {447--472},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a4/}
}
                      
                      
                    N. I. Nessonov. An analogue of Schur--Weyl duality for the unitary group of a~$\mathrm{II}_1$-factor. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 447-472. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a4/
                  
                