An analogue of Schur--Weyl duality for the unitary group of a~$\mathrm{II}_1$-factor
Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 447-472

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the classical Schur–Weyl duality is found for the unitary group of an arbitrary $\mathrm{II}_1$-factor. Bibliography: 20 titles.
Keywords: unitary group of a von Neumann factor, Schur–Weyl duality, factor representation, quasi-equivalent representations.
@article{SM_2019_210_3_a4,
     author = {N. I. Nessonov},
     title = {An analogue of {Schur--Weyl} duality for the unitary group of a~$\mathrm{II}_1$-factor},
     journal = {Sbornik. Mathematics},
     pages = {447--472},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a4/}
}
TY  - JOUR
AU  - N. I. Nessonov
TI  - An analogue of Schur--Weyl duality for the unitary group of a~$\mathrm{II}_1$-factor
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 447
EP  - 472
VL  - 210
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_3_a4/
LA  - en
ID  - SM_2019_210_3_a4
ER  - 
%0 Journal Article
%A N. I. Nessonov
%T An analogue of Schur--Weyl duality for the unitary group of a~$\mathrm{II}_1$-factor
%J Sbornik. Mathematics
%D 2019
%P 447-472
%V 210
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_3_a4/
%G en
%F SM_2019_210_3_a4
N. I. Nessonov. An analogue of Schur--Weyl duality for the unitary group of a~$\mathrm{II}_1$-factor. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 447-472. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a4/