Is Zaremba's conjecture true?
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 364-416
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For finite continued fractions in which all partial quotients lie in the alphabet $\{1,2,3,5\}$, it is shown that the set of denominators not exceeding $N$ has cardinality $\gg N^{0.85}$. A calculation using an analogue of Bourgain-Kontorovich's theorem from 2011 gives $\gg N^{0.80}$. 
Bibliography: 25 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
continued fraction, trigonometric sum
Mots-clés : Zaremba's conjecture, partial quotients, continuant, Hausdorff dimension.
                    
                  
                
                
                Mots-clés : Zaremba's conjecture, partial quotients, continuant, Hausdorff dimension.
@article{SM_2019_210_3_a2,
     author = {I. D. Kan},
     title = {Is {Zaremba's} conjecture true?},
     journal = {Sbornik. Mathematics},
     pages = {364--416},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a2/}
}
                      
                      
                    I. D. Kan. Is Zaremba's conjecture true?. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 364-416. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a2/
