Is Zaremba's conjecture true?
Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 364-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For finite continued fractions in which all partial quotients lie in the alphabet $\{1,2,3,5\}$, it is shown that the set of denominators not exceeding $N$ has cardinality $\gg N^{0.85}$. A calculation using an analogue of Bourgain-Kontorovich's theorem from 2011 gives $\gg N^{0.80}$. Bibliography: 25 titles.
Keywords: continued fraction, trigonometric sum
Mots-clés : Zaremba's conjecture, partial quotients, continuant, Hausdorff dimension.
@article{SM_2019_210_3_a2,
     author = {I. D. Kan},
     title = {Is {Zaremba's} conjecture true?},
     journal = {Sbornik. Mathematics},
     pages = {364--416},
     year = {2019},
     volume = {210},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a2/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - Is Zaremba's conjecture true?
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 364
EP  - 416
VL  - 210
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_3_a2/
LA  - en
ID  - SM_2019_210_3_a2
ER  - 
%0 Journal Article
%A I. D. Kan
%T Is Zaremba's conjecture true?
%J Sbornik. Mathematics
%D 2019
%P 364-416
%V 210
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2019_210_3_a2/
%G en
%F SM_2019_210_3_a2
I. D. Kan. Is Zaremba's conjecture true?. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 364-416. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a2/

[1] S. K. Zaremba, “La méthode des “bons treillis” pour le calcul des intégerales multiples”, Applications of number theory to numerical analysis (Univ. Montreal, Montreal, QC, 1971), Academic Press, New York, 1972, 39–119 | MR | Zbl

[2] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196 | DOI | MR | Zbl

[3] N. G. Moshchevitin, On some open problems in Diophantine approximation, arXiv: 1202.4539

[4] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963, 224 pp. | MR | Zbl

[5] D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR | Zbl

[6] D. A. Frolenkov, I. D. Kan, A reinforcement of the Bourgain–Kontorovich's theorem by elementary methods, arXiv: 1207.4546

[7] D. A. Frolenkov, I. D. Kan, A reinforcement of the Bourgain–Kontorovich's theorem, arXiv: 1207.5168

[8] I. D. Kan, D. A. Frolenkov, “A strengthening of a theorem of Bourgain and Kontorovich”, Izv. Math., 78:2 (2014), 293–353 | DOI | DOI | MR | Zbl

[9] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR | Zbl

[10] ShinnYih Huang, “An improvement to Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR | Zbl

[11] I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. III”, Izv. Math., 79:2 (2015), 288–310 | DOI | DOI | MR | Zbl

[12] I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. IV”, Izv. Math., 80:6 (2016), 1094–1117 | DOI | DOI | MR | Zbl

[13] I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. V”, Proc. Steklov Inst. Math., 296 (2017), 125–131 | DOI | DOI | MR | Zbl

[14] M. Magee, Hee Oh, D. Winter, Expanding maps and continued fractions, arXiv: 1412.4284

[15] M. Magee, Hee Oh, D. Winter, Uniform congruence counting for Schottky semigroups in $\operatorname{SL}_2(\mathbf Z)$, arXiv: 1601.03705

[16] O. Jenkinson, “On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture”, Stoch. Dyn., 4:1 (2004), 63–76 | DOI | MR | Zbl

[17] D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Théorie des nombres (Quebec, PQ, 1987), de Gruyter, Berlin, 1989, 371–385 | MR | Zbl

[18] I. M. Vinogradov, “An estimate for a certain sum extended over the primes of an arithmetical progression”, Amer. Math. Soc. Transl. Ser. 2, 82, Amer. Math. Soc., Providence, RI, 1969, 147–164 | DOI | MR | Zbl

[19] N. M. Korobov, Exponential sums and their applications, Math. Appl. (Soviet Ser.), 80, Kluwer Acad. Publ., Dordrecht, 1992, xvi+209 pp. | DOI | MR | MR | Zbl | Zbl

[20] A. Ya. Khinchin, Continued fractions, The Univ. of Chicago Press, Chicago, IL–London, 1964, xi+95 pp. | MR | MR | Zbl | Zbl

[21] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, 2nd ed., Addison-Wesley Publ. Co., Reading, MA, 1994, xiv+657 pp. | MR | Zbl

[22] A. A. Dushistova, I. D. Kan, N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794 | DOI | MR | Zbl

[23] R. C. Vaughan, The Hardy–Littlewood method, Cambridge Tracts in Math., 80, Cambridge Univ. Press, Cambridge–New York, 1981, xi+172 pp. | MR | MR | Zbl | Zbl

[24] S. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova. Aktualnye problemy, Ch. 3 (Tula, 2001), MGU, mekh.-matem. fak-t, M., 2002, 86–114 | MR | Zbl

[25] I. D. Kan, “Inversion of the Cauchy–Bunyakovskii–Schwarz inequality”, Math. Notes, 99:3 (2016), 378–381 | DOI | DOI | MR | Zbl