Is Zaremba's conjecture true?
Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 364-416

Voir la notice de l'article provenant de la source Math-Net.Ru

For finite continued fractions in which all partial quotients lie in the alphabet $\{1,2,3,5\}$, it is shown that the set of denominators not exceeding $N$ has cardinality $\gg N^{0.85}$. A calculation using an analogue of Bourgain-Kontorovich's theorem from 2011 gives $\gg N^{0.80}$. Bibliography: 25 titles.
Keywords: continued fraction, trigonometric sum
Mots-clés : Zaremba's conjecture, partial quotients, continuant, Hausdorff dimension.
@article{SM_2019_210_3_a2,
     author = {I. D. Kan},
     title = {Is {Zaremba's} conjecture true?},
     journal = {Sbornik. Mathematics},
     pages = {364--416},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a2/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - Is Zaremba's conjecture true?
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 364
EP  - 416
VL  - 210
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_3_a2/
LA  - en
ID  - SM_2019_210_3_a2
ER  - 
%0 Journal Article
%A I. D. Kan
%T Is Zaremba's conjecture true?
%J Sbornik. Mathematics
%D 2019
%P 364-416
%V 210
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_3_a2/
%G en
%F SM_2019_210_3_a2
I. D. Kan. Is Zaremba's conjecture true?. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 364-416. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a2/