The Fomenko–Zieschang invariants of nonconvex topological billiards
Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 310-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Along with a classical planar billiard, one can consider a topological billiard for which the motion takes place on a locally planar surface obtained by an isometric gluing of several planar domains along boundaries that are arcs of confocal quadrics. Here, a point is moving inside every domain along segments of straight lines, passing from one domain into another when it hits the boundary of the gluing. The author has previously obtained the Liouville classification of all such topological billiards obtained by gluings along convex boundaries. In the present paper, we classify all topological integrable billiards obtained by gluing both along convex and along nonconvex boundaries from elementary billiards bounded by arcs of confocal quadrics. For all such nonconvex topological billiards, the Fomenko–Zieschang invariants (marked molecules $W^*$) of Liouville equivalence are calculated. Bibliography: 25 titles.
Keywords: integrable system
Mots-clés : billiard, Liouville equivalence, Fomenko–Zieschang invariant.
@article{SM_2019_210_3_a1,
     author = {V. V. Vedyushkina},
     title = {The {Fomenko{\textendash}Zieschang} invariants of nonconvex topological billiards},
     journal = {Sbornik. Mathematics},
     pages = {310--363},
     year = {2019},
     volume = {210},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a1/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
TI  - The Fomenko–Zieschang invariants of nonconvex topological billiards
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 310
EP  - 363
VL  - 210
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_3_a1/
LA  - en
ID  - SM_2019_210_3_a1
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%T The Fomenko–Zieschang invariants of nonconvex topological billiards
%J Sbornik. Mathematics
%D 2019
%P 310-363
%V 210
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2019_210_3_a1/
%G en
%F SM_2019_210_3_a1
V. V. Vedyushkina. The Fomenko–Zieschang invariants of nonconvex topological billiards. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 310-363. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a1/

[1] S. Tabachnikov, Geometriya i billiardy, NITs “Regulyarnaya i khaoticheskaya dinamika”, In-t kompyuternykh issledovanii, M.–Izhevsk, 2011, 180 pp.; S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl

[2] Dzh. D. Birkgof, Dinamicheskie sistemy, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999, 408 pp. ; G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | Zbl | MR | Zbl

[3] V. V. Kozlov, D. V. Treschëv, Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo Mosk. un-ta, M., 1991, 168 pp. | MR | Zbl

[4] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl

[5] V. Dragovich, M. Radnovich, Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010, 338 pp.; V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl

[6] V. V. Fokicheva, “Opisanie osobennostei sistemy “billiard v ellipse” ”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2012, no. 5, 31–34 | MR | Zbl

[7] V. V. Fokicheva, “Opisanie osobennostei sistemy bilyarda v oblastyakh, ogranichennykh sofokusnymi ellipsami ili giperbolami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2014, no. 4, 18–27 | MR | Zbl

[8] V. V. Fokicheva, “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl

[9] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | DOI | MR | Zbl

[10] V. V. Vedyushkina, “Sloenie Liuvillya nevypuklykh topologicheskikh billiardov”, Dokl. RAN, 478:1 (2018), 7–11 | DOI | MR | Zbl

[11] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999, 444 s., 447 pp. ; A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | Zbl | DOI | MR | Zbl

[12] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl

[13] V. V. Fokicheva, A. T. Fomenko, “Integriruemye billiardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, Dokl. RAN, 465:2 (2015), 150–153 | DOI | MR | Zbl

[14] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 147–183 | MR | Zbl

[15] A. V. Bolsinov, A. T. Fomenko, “Geodezicheskii potok ellipsoida traektorno ekvivalenten integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Dokl. RAN, 339:3 (1994), 253–296 | MR | Zbl

[16] A. V. Bolsinov, A. T. Fomenko, “Traektornaya klassifikatsiya geodezicheskikh potokov dvumernykh ellipsoidov. Zadacha Yakobi traektorno ekvivalentna integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Funkts. analiz i ego pril., 29:3 (1995), 1–15 | MR | Zbl

[17] A. T. Fomenko, Kh. Tsishang, “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 ; A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | MR | Zbl | DOI

[18] A. T. Fomenko, “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1(265) (1989), 145–173 | MR | Zbl

[19] A. T. Fomenko, Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo Mosk. un-ta, M., 1988, 414 pp. ; A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, 2nd ed., Gordon and Breach Publishers, Luxembourg, 1995, xvi+467 pp. | MR | Zbl | MR | Zbl

[20] A. T. Fomenko, Kh. Tsishang, “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 ; A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | MR | Zbl | DOI

[21] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR | Zbl

[22] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl

[23] A. T. Fomenko, A. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl

[24] E. A. Kudryavtseva, A. T. Fomenko, “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN, 446:6 (2012), 615–617 | MR | Zbl

[25] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl