Mots-clés : billiard, Liouville equivalence, Fomenko–Zieschang invariant.
@article{SM_2019_210_3_a1,
author = {V. V. Vedyushkina},
title = {The {Fomenko{\textendash}Zieschang} invariants of nonconvex topological billiards},
journal = {Sbornik. Mathematics},
pages = {310--363},
year = {2019},
volume = {210},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a1/}
}
V. V. Vedyushkina. The Fomenko–Zieschang invariants of nonconvex topological billiards. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 310-363. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a1/
[1] S. Tabachnikov, Geometriya i billiardy, NITs “Regulyarnaya i khaoticheskaya dinamika”, In-t kompyuternykh issledovanii, M.–Izhevsk, 2011, 180 pp.; S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl
[2] Dzh. D. Birkgof, Dinamicheskie sistemy, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999, 408 pp. ; G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | Zbl | MR | Zbl
[3] V. V. Kozlov, D. V. Treschëv, Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo Mosk. un-ta, M., 1991, 168 pp. | MR | Zbl
[4] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl
[5] V. Dragovich, M. Radnovich, Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010, 338 pp.; V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl
[6] V. V. Fokicheva, “Opisanie osobennostei sistemy “billiard v ellipse” ”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2012, no. 5, 31–34 | MR | Zbl
[7] V. V. Fokicheva, “Opisanie osobennostei sistemy bilyarda v oblastyakh, ogranichennykh sofokusnymi ellipsami ili giperbolami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2014, no. 4, 18–27 | MR | Zbl
[8] V. V. Fokicheva, “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl
[9] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | DOI | MR | Zbl
[10] V. V. Vedyushkina, “Sloenie Liuvillya nevypuklykh topologicheskikh billiardov”, Dokl. RAN, 478:1 (2018), 7–11 | DOI | MR | Zbl
[11] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999, 444 s., 447 pp. ; A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | Zbl | DOI | MR | Zbl
[12] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl
[13] V. V. Fokicheva, A. T. Fomenko, “Integriruemye billiardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, Dokl. RAN, 465:2 (2015), 150–153 | DOI | MR | Zbl
[14] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 147–183 | MR | Zbl
[15] A. V. Bolsinov, A. T. Fomenko, “Geodezicheskii potok ellipsoida traektorno ekvivalenten integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Dokl. RAN, 339:3 (1994), 253–296 | MR | Zbl
[16] A. V. Bolsinov, A. T. Fomenko, “Traektornaya klassifikatsiya geodezicheskikh potokov dvumernykh ellipsoidov. Zadacha Yakobi traektorno ekvivalentna integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Funkts. analiz i ego pril., 29:3 (1995), 1–15 | MR | Zbl
[17] A. T. Fomenko, Kh. Tsishang, “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 ; A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | MR | Zbl | DOI
[18] A. T. Fomenko, “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1(265) (1989), 145–173 | MR | Zbl
[19] A. T. Fomenko, Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo Mosk. un-ta, M., 1988, 414 pp. ; A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, 2nd ed., Gordon and Breach Publishers, Luxembourg, 1995, xvi+467 pp. | MR | Zbl | MR | Zbl
[20] A. T. Fomenko, Kh. Tsishang, “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 ; A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | MR | Zbl | DOI
[21] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR | Zbl
[22] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl
[23] A. T. Fomenko, A. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl
[24] E. A. Kudryavtseva, A. T. Fomenko, “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN, 446:6 (2012), 615–617 | MR | Zbl
[25] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl