Banach spaces with shortest network length depending only on pairwise distances between points
Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 297-309

Voir la notice de l'article provenant de la source Math-Net.Ru

For a real Banach space realising shortest networks for all finite subsets, we prove that a necessary and sufficient condition for the shortest network length to be expressed as a function only of pairwise distances between its points is that the space is either predual to $L_1$ or a Hilbert space. We give a characterization of spaces predual to $L_1$ and Hilbert spaces in terms of shortest networks. Bibliography: 23 titles.
Keywords: Banach space, shortest network, Steiner point
Mots-clés : Lindenstrauss spaces.
@article{SM_2019_210_3_a0,
     author = {L. Sh. Burusheva},
     title = {Banach spaces with shortest network length depending only on pairwise distances between points},
     journal = {Sbornik. Mathematics},
     pages = {297--309},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a0/}
}
TY  - JOUR
AU  - L. Sh. Burusheva
TI  - Banach spaces with shortest network length depending only on pairwise distances between points
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 297
EP  - 309
VL  - 210
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_3_a0/
LA  - en
ID  - SM_2019_210_3_a0
ER  - 
%0 Journal Article
%A L. Sh. Burusheva
%T Banach spaces with shortest network length depending only on pairwise distances between points
%J Sbornik. Mathematics
%D 2019
%P 297-309
%V 210
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_3_a0/
%G en
%F SM_2019_210_3_a0
L. Sh. Burusheva. Banach spaces with shortest network length depending only on pairwise distances between points. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 297-309. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a0/