Mots-clés : Lindenstrauss spaces.
@article{SM_2019_210_3_a0,
author = {L. Sh. Burusheva},
title = {Banach spaces with shortest network length depending only on pairwise distances between points},
journal = {Sbornik. Mathematics},
pages = {297--309},
year = {2019},
volume = {210},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_3_a0/}
}
L. Sh. Burusheva. Banach spaces with shortest network length depending only on pairwise distances between points. Sbornik. Mathematics, Tome 210 (2019) no. 3, pp. 297-309. http://geodesic.mathdoc.fr/item/SM_2019_210_3_a0/
[1] D. Cieslik, Steiner minimal trees, Nonconvex Optim. Appl., 23, Kluwer Acad. Publ., Dordrecht, 1998, xii+319 pp. | DOI | MR | Zbl
[2] A. L. Garkavi, V. A. Shmatkov, “O tochke Lame i ee obobscheniyakh v normirovannom prostranstve”, Matem. sb., 95(137):2(10) (1974), 272–293 | MR | Zbl
[3] M. Baronti, E. Casini, P. L. Papini, “Equilateral sets and their central points”, Rend. Mat. Appl. (7), 13:1 (1993), 133–148 | MR | Zbl
[4] P. L. Papini, “Two new examples of sets without medians and centers”, Top, 13:2 (2005), 315–320 | DOI | MR | Zbl
[5] L. Veselý, “A characterization of reflexivity in the terms of the existence of generalized centers”, Extracta Math., 8:2-3 (1993), 125–131 | MR | Zbl
[6] P. A. Borodin, “Primer nesuschestvovaniya tochki Shteinera v banakhovom prostranstve”, Matem. zametki, 87:4 (2010), 514–518 | DOI | MR | Zbl
[7] V. Kadets, “Under a suitable renorming every nonreflexive Banach space has a finite subset without a Steiner point”, Mat. Stud., 36:2 (2011), 197–200 | MR | Zbl
[8] B. B. Bednov, N. P. Strelkova, “O suschestvovanii kratchaishikh setei v banakhovykh prostranstvakh”, Matem. zametki, 94:1 (2013), 46–54 | DOI | MR | Zbl
[9] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Sovremennaya matematika, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003, 424 pp.
[10] A. O. Ivanov, A. A. Tuzhilin, “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl
[11] H. Edelsbrunner, A. Ivanov, R. Karasev, “Current open problems in discrete and computational geometry”, Model. i analiz inform. sistem, 19:5 (2012), 5–17
[12] A. Yu. Eremin, “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Matem. sb., 204:9 (2013), 51–72 | DOI | MR | Zbl
[13] B. B. Bednov, P. A. Borodin, “Banakhovy prostranstva, realizuyuschie minimalnye zapolneniya”, Matem. sb., 205:4 (2014), 3–20 | DOI | MR | Zbl
[14] A. Grothendieck, “Une caracterisation vectorielle-metrique des espaces $L^1$”, Canad. J. Math., 7 (1955), 552–561 | DOI | MR | Zbl
[15] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc., 48, Amer. Math. Soc., Providence, RI, 1964, 112 pp. | MR | Zbl
[16] Ȧ. Lima, “Intersection properties of balls and subspaces in Banach spaces”, Trans. Amer. Math. Soc., 227 (1977), 1–62 | DOI | MR | Zbl
[17] Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis, v. 1, Amer. Math. Soc. Colloq. Publ., 68, Amer. Math. Soc., Providence, RI, 2000, xii+488 pp. | MR | Zbl
[18] G. Sh. Rubinshtein, “Ob odnoi ekstremalnoi zadache v lineinom normirovannom prostranstve”, Sib. matem. zhurn., 6:3 (1965), 711–714 | MR | Zbl
[19] E. W. Cheney, Introduction to approximation theory, Reprint of the 2nd ed., AMS Chelsea Publishing, Providence, RI, 1998, xii+259 pp. | MR | Zbl
[20] L. Veselý, “Generalized centers of finite sets in Banach spaces”, Acta Math. Univ. Comenian. (N.S.), 66:1 (1997), 83–115 | MR | Zbl
[21] P. Jordan, J. V. Neumann, “On inner products in linear, metric spaces”, Ann. of Math. (2), 36:3 (1935), 719–723 | DOI | MR | Zbl
[22] I. M. Yaglom, V. G. Ashkinuze, Idei i metody affinnoi i proektivnoi geometrii. Chast 1. Affinnaya geometriya, Uchpedgiz, M., 1962, 247 pp. | MR | Zbl
[23] W. Blaschke, Kreis und Kugel, 2. durchgesehene und verbesserte Aufl., Walter de Gruyter Co., Berlin, 1956, viii+167 pp. | MR | MR | Zbl | Zbl