Tauberian class estimates for vector-valued distributions
Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 272-296
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study Tauberian properties of regularizing transforms of vector-valued tempered distributions. The transforms have the form $M^\mathbf f_\varphi(x,y)=(\mathbf f\ast\varphi_y)(x)$, where the kernel $\varphi$ is a test function and $\varphi_y(\cdot)=y^{-n}\varphi(\cdot/y)$. We investigate conditions which ensure that a distribution that a priori takes values in a locally convex space actually takes values in a narrower Banach space. Our goal is to characterize spaces of Banach-space-valued tempered distributions in terms of so-called class estimates for the transform $M^\mathbf f_\varphi(x,y)$. Our results generalize and improve earlier Tauberian theorems due to Drozhzhinov and Zav'yalov. Special attention is paid to finding the optimal class of kernels $\varphi$ for which these Tauberian results hold. Bibliography: 24 titles.
Keywords: regularizing transforms, class estimates, Tauberian theorems, vector-valued distributions, wavelet transform.
@article{SM_2019_210_2_a4,
     author = {S. Pilipovi\'c and J. Vindas},
     title = {Tauberian class estimates for vector-valued distributions},
     journal = {Sbornik. Mathematics},
     pages = {272--296},
     year = {2019},
     volume = {210},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_2_a4/}
}
TY  - JOUR
AU  - S. Pilipović
AU  - J. Vindas
TI  - Tauberian class estimates for vector-valued distributions
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 272
EP  - 296
VL  - 210
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_2_a4/
LA  - en
ID  - SM_2019_210_2_a4
ER  - 
%0 Journal Article
%A S. Pilipović
%A J. Vindas
%T Tauberian class estimates for vector-valued distributions
%J Sbornik. Mathematics
%D 2019
%P 272-296
%V 210
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2019_210_2_a4/
%G en
%F SM_2019_210_2_a4
S. Pilipović; J. Vindas. Tauberian class estimates for vector-valued distributions. Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 272-296. http://geodesic.mathdoc.fr/item/SM_2019_210_2_a4/

[1] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Paperback ed., Cambridge Univ. Press, Cambridge, 1989, xx+494 pp. | DOI | MR | Zbl

[2] R. Chill, “Tauberian theorems for vector-valued Fourier and Laplace transforms”, Studia Math., 128:1 (1998), 55–69 | DOI | MR | Zbl

[3] G. Debruyne, J. Vindas, “Generalization of the Wiener–Ikehara theorem”, Illinois J. Math., 60:2 (2016), 613–624 | MR | Zbl

[4] G. Debruyne, J. Vindas, “Optimal Tauberian constant in Ingham's theorem for Laplace transforms”, Israel J. Math., 228:2 (2018), 557–586 | DOI | MR | Zbl

[5] G. Debruyne, J. Vindas, “Complex Tauberian theorems for Laplace transforms with local pseudofunction boundary behavior”, J. Anal. Math. (to appear)

[6] P. Dimovski, S. Pilipović, J. Vindas, “New distribution spaces associated to translation-invariant Banach spaces”, Monatsh. Math., 177:4 (2015), 495–515 | DOI | MR | Zbl

[7] Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Russian Math. Surveys, 71:6 (2016), 1081–1134 | DOI | DOI | MR | Zbl

[8] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Tauberian theorems for generalized functions with values in Banach spaces”, Izv. Math., 66:4 (2002), 701–769 | DOI | DOI | MR | Zbl

[9] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Multidimensional Tauberian theorems for Banach-space valued generalized functions”, Sb. Math., 194:11 (2003), 1599–1646 | DOI | DOI | MR | Zbl

[10] Yu. N. Drozhzhinov, B. I. Zavyalov, “Applications of Tauberian theorems in some problems in mathematical physics”, Theoret. and Math. Phys., 157:3 (2008), 1678–1693 | DOI | DOI | MR | Zbl

[11] M. Holschneider, Wavelets. An analysis tool, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1995, xiv+423 pp. | MR | Zbl

[12] J. Korevaar, Tauberian theory. A century of developments, Grundlehren Math. Wiss., 329, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[13] J. Korevaar, “Distributional Wiener–Ikehara theorem and twin primes”, Indag. Math. (N.S.), 16:1 (2005), 37–49 | DOI | MR | Zbl

[14] S. Pilipović, D. Rakić, J. Vindas, “New classes of weighted Hölder–Zygmund spaces and the wavelet transform”, J. Funct. Spaces Appl., 2012 (2012), 815475, 18 pp. | DOI | MR | Zbl

[15] S. Pilipović, B. Stanković, J. Vindas, Asymptotic behavior of generalized functions, Ser. Anal. Appl. Comput., 5, World Sci. Publ., Hackensack, NJ, 2012, xiv+294 pp. | MR | Zbl

[16] S. Pilipović, J. Vindas, “Multidimensional Tauberian theorems for vector-valued distributions”, Publ. Inst. Math. (Beograd) (N.S.), 95:109 (2014), 1–28 | DOI | MR | Zbl

[17] W. Rudin, Functional analysis, Internat. Ser. Pure Appl. Math., 2nd ed., McGraw-Hill, Inc., 1991, xviii+424 pp. | MR | MR | Zbl

[18] L. Schwartz, “Théorie des distributions à valeurs vectorielles. I”, Ann. Inst. Fourier Grenoble, 7 (1957), 1–141 | DOI | MR | Zbl

[19] J. Sebastião e Silva, “Sur la définition et la structure des distributions vectorielles”, Portugal. Math., 19 (1960), 1–80 | MR | Zbl

[20] F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York–London, 1967, xvi+624 pp. | MR | Zbl

[21] J. Vindas, S. Pilipović, D. Rakić, “Tauberian theorems for the wavelet transform”, J. Fourier Anal. Appl., 17:1 (2011), 65–95 | DOI | MR | Zbl

[22] V. S. Vladimirov, Methods of the theory of generalized functions, Anal. Methods Spec. Funct., 6, Taylor Francis, London, 2002, xiv+311 pp. | MR | Zbl

[23] V. S. Vladimirov, Yu. N. Drozzinov, B. I. Zavialov, Tauberian theorems for generalized functions, Math. Appl. (Soviet Ser.), 10, Kluwer Acad. Publ., Dordrecht, 1988, xvi+293 pp. | DOI | MR | MR | Zbl | Zbl

[24] B. I. Zav'yalov, “On the asymptotic properties of functions holomorphic in tubular cones”, Math. USSR-Sb., 64:1 (1989), 97–113 | DOI | MR | Zbl