A~self-symmetric cycle in a~system of two diffusely connected Hutchinson's equations
Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 184-233
Voir la notice de l'article provenant de la source Math-Net.Ru
The so-called bi-local model is considered for Hutchinson's equation. This is a system of two identical nonlinear delay differential equations connected by means of linear diffusion terms. The question of the existence, asymptotic behaviour and stability of a particular periodic solution of this system, such that a certain phase shift takes the coordinates of this solution back to this solution, are investigated.
Bibliography: 19 titles.
Keywords:
Hutchinson's equation, bi-local model, self-symmetric cycle, asymptotic behaviour, stability.
@article{SM_2019_210_2_a1,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {A~self-symmetric cycle in a~system of two diffusely connected {Hutchinson's} equations},
journal = {Sbornik. Mathematics},
pages = {184--233},
publisher = {mathdoc},
volume = {210},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_2_a1/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - A~self-symmetric cycle in a~system of two diffusely connected Hutchinson's equations JO - Sbornik. Mathematics PY - 2019 SP - 184 EP - 233 VL - 210 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2019_210_2_a1/ LA - en ID - SM_2019_210_2_a1 ER -
%0 Journal Article %A S. D. Glyzin %A A. Yu. Kolesov %A N. Kh. Rozov %T A~self-symmetric cycle in a~system of two diffusely connected Hutchinson's equations %J Sbornik. Mathematics %D 2019 %P 184-233 %V 210 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2019_210_2_a1/ %G en %F SM_2019_210_2_a1
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. A~self-symmetric cycle in a~system of two diffusely connected Hutchinson's equations. Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 184-233. http://geodesic.mathdoc.fr/item/SM_2019_210_2_a1/