A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations
Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 184-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The so-called bi-local model is considered for Hutchinson's equation. This is a system of two identical nonlinear delay differential equations connected by means of linear diffusion terms. The question of the existence, asymptotic behaviour and stability of a particular periodic solution of this system, such that a certain phase shift takes the coordinates of this solution back to this solution, are investigated. Bibliography: 19 titles.
Keywords: Hutchinson's equation, bi-local model, self-symmetric cycle, asymptotic behaviour, stability.
@article{SM_2019_210_2_a1,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {A~self-symmetric cycle in a~system of two diffusely connected {Hutchinson's} equations},
     journal = {Sbornik. Mathematics},
     pages = {184--233},
     year = {2019},
     volume = {210},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_2_a1/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 184
EP  - 233
VL  - 210
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_2_a1/
LA  - en
ID  - SM_2019_210_2_a1
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations
%J Sbornik. Mathematics
%D 2019
%P 184-233
%V 210
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2019_210_2_a1/
%G en
%F SM_2019_210_2_a1
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations. Sbornik. Mathematics, Tome 210 (2019) no. 2, pp. 184-233. http://geodesic.mathdoc.fr/item/SM_2019_210_2_a1/

[1] E. F. Mischenko, L. S. Pontryagin, “Periodicheskie resheniya sistem differentsialnykh uravnenii, blizkie k razryvnym”, Dokl. AN SSSR, 102:5 (1955), 889–891 | MR | Zbl

[2] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980, x+228 pp. | DOI | MR | MR | Zbl | Zbl

[3] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994, xii+281 pp. | MR | MR | Zbl | Zbl

[4] A. Yu. Kolesov, Yu. S. Kolesov, “Relaxational oscillations in mathematical models of ecology”, Proc. Steklov Inst. Math., 199 (1995), 1–126 | MR | Zbl

[5] G. E. Hutchinson, “Circular causal systems in ecology”, Teleological mechanisms, Ann. New York Acad. Sci., 50, no. 4, New York Acad. Sci., New York, NY, 1948, 221–246 | DOI

[6] E. M. Wright, “A non-linear difference-differential equation”, J. Reine Angew. Math., 1955:194 (1955), 66–87 | DOI | MR | Zbl

[7] G. S. Jones, “Asymptotic behavior and periodic solutions of a nonlinear differential-difference equation”, Proc. Nat. Acad. Sci. U.S.A., 47:6 (1961), 879–882 | DOI | MR | Zbl

[8] J. Hale, Theory of functional differential equations, Appl. Math. Sci., 3, 2nd ed., Springer-Verlag, New York–Heidelberg, 1977, x+365 pp. | DOI | MR | MR | Zbl | Zbl

[9] A. Yu. Kolesov, N. Kh. Rozov, “The theory of relaxation oscillations for Hutchinson's equation”, Sb. Math., 202:6 (2011), 829–858 | DOI | DOI | MR | Zbl

[10] A. Yu. Kolesov, “Ob ustoichivosti prostranstvenno odnorodnogo tsikla uravneniya Khatchinsona s diffuziei”, Matematicheskie modeli v biologii i meditsine, 1, IMK AN Lit. SSR, Vilnyus, 1985, 93–102 | Zbl

[11] S. D. Glyzin, Yu. S. Kolesov, “Optimalnyi sposob vedeniya rybnogo khozyaistva”, Matematicheskie modeli v biologii i meditsine, 3, IMK AN Lit. SSR, Vilnyus, 1989, 37–41

[12] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in Hopfield networks with delay”, Izv. Math., 77:2 (2013), 271–312 | DOI | DOI | MR | Zbl

[13] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Periodic traveling-wave-type solutions in circular chains of unidirectionally coupled equations”, Theoret. and Math. Phys., 175:1 (2013), 499–517 | DOI | DOI | MR | Zbl

[14] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The buffer phenomenon in ring-like chains of unidirectionally connected generators”, Izv. Math., 78:4 (2014), 708–743 | DOI | DOI | MR | Zbl

[15] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “A modification of Hutchinson's equation”, Comput. Math. Math. Phys., 50:12 (2010), 1990–2002 | DOI | MR | Zbl

[16] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Mnogolikii khaos, Fizmatlit, M., 2012, 432 pp.

[17] S. A. Kaschenko, “Prostranstvenno-neodnorodnye struktury v prosteishikh modelyakh s zapazdyvaniem i diffuziei”, Matem. modelirovanie, 2:9 (1990), 49–69 | MR | Zbl

[18] S. A. Kaschenko, “Dinamika logisticheskogo uravneniya s zapazdyvaniem i zapazdyvayuschim upravleniem”, Model. i analiz inform. sistem, 21:5 (2014), 61–77

[19] S. A. Kaschenko, V. E. Frolov, “Asimptotika ustanovivshikhsya rezhimov konechno-raznostnykh approksimatsii logisticheskogo uravneniya s zapazdyvaniem i s maloi diffuziei”, Model. i analiz inform. sistem, 21:1 (2014), 94–114