Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian
Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 145-164
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Dirichlet problem with $p(\,\cdot\,)$-Laplacian in a bounded domain, where $p(\,\cdot\,)$ is a measurable function whose range is bounded away from $1$ and $\infty$. A system of Galerkin approximations is constructed for the so-called $H$-solution or any other variational solution, and energy norm error estimates are proved.
References: 19 items.
Keywords:
Galerkin approximants, equations with variable order of nonlinearity, approximation error estimate.
@article{SM_2019_210_1_a4,
author = {S. E. Pastukhova and D. A. Yakubovich},
title = {Galerkin approximations for the {Dirichlet} problem with the $p(x)${-Laplacian}},
journal = {Sbornik. Mathematics},
pages = {145--164},
publisher = {mathdoc},
volume = {210},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/}
}
TY - JOUR AU - S. E. Pastukhova AU - D. A. Yakubovich TI - Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian JO - Sbornik. Mathematics PY - 2019 SP - 145 EP - 164 VL - 210 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/ LA - en ID - SM_2019_210_1_a4 ER -
S. E. Pastukhova; D. A. Yakubovich. Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian. Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 145-164. http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/