Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian
Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 145-164

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Dirichlet problem with $p(\,\cdot\,)$-Laplacian in a bounded domain, where $p(\,\cdot\,)$ is a measurable function whose range is bounded away from $1$ and $\infty$. A system of Galerkin approximations is constructed for the so-called $H$-solution or any other variational solution, and energy norm error estimates are proved. References: 19 items.
Keywords: Galerkin approximants, equations with variable order of nonlinearity, approximation error estimate.
@article{SM_2019_210_1_a4,
     author = {S. E. Pastukhova and D. A. Yakubovich},
     title = {Galerkin approximations for the {Dirichlet} problem with the $p(x)${-Laplacian}},
     journal = {Sbornik. Mathematics},
     pages = {145--164},
     publisher = {mathdoc},
     volume = {210},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/}
}
TY  - JOUR
AU  - S. E. Pastukhova
AU  - D. A. Yakubovich
TI  - Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 145
EP  - 164
VL  - 210
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/
LA  - en
ID  - SM_2019_210_1_a4
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%A D. A. Yakubovich
%T Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian
%J Sbornik. Mathematics
%D 2019
%P 145-164
%V 210
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/
%G en
%F SM_2019_210_1_a4
S. E. Pastukhova; D. A. Yakubovich. Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian. Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 145-164. http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/