Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian
Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 145-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Dirichlet problem with $p(\,\cdot\,)$-Laplacian in a bounded domain, where $p(\,\cdot\,)$ is a measurable function whose range is bounded away from $1$ and $\infty$. A system of Galerkin approximations is constructed for the so-called $H$-solution or any other variational solution, and energy norm error estimates are proved. References: 19 items.
Keywords: Galerkin approximants, equations with variable order of nonlinearity, approximation error estimate.
@article{SM_2019_210_1_a4,
     author = {S. E. Pastukhova and D. A. Yakubovich},
     title = {Galerkin approximations for the {Dirichlet} problem with the $p(x)${-Laplacian}},
     journal = {Sbornik. Mathematics},
     pages = {145--164},
     year = {2019},
     volume = {210},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/}
}
TY  - JOUR
AU  - S. E. Pastukhova
AU  - D. A. Yakubovich
TI  - Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 145
EP  - 164
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/
LA  - en
ID  - SM_2019_210_1_a4
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%A D. A. Yakubovich
%T Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian
%J Sbornik. Mathematics
%D 2019
%P 145-164
%V 210
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/
%G en
%F SM_2019_210_1_a4
S. E. Pastukhova; D. A. Yakubovich. Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian. Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 145-164. http://geodesic.mathdoc.fr/item/SM_2019_210_1_a4/

[1] V. V. Zhikov, “On the technique for passing to the limit in nonlinear elliptic equations”, Funct. Anal. Appl., 43:2 (2009), 96–112 | DOI | DOI | MR | Zbl

[2] V. V. Zhikov, “New approach to the solvability of generalized Navier–Stokes equations”, Funct. Anal. Appl., 43:3 (2009), 190–207 | DOI | DOI | MR | Zbl

[3] V. V. Zhikov, S. E. Pastukhova, “Lemmas on compensated compactness in elliptic and parabolic equations”, Proc. Steklov Inst. Math., 270 (2010), 104–131 | DOI | MR | Zbl

[4] V. V. Zhikov, D. A. Yakubovich, “Galerkin approximations in problems with $p$-Laplacian”, J. Math. Sci. (N. Y.), 219:1 (2016), 99–111 | DOI | MR | Zbl

[5] O. Kováčik, J. Rákosník, “On spaces $L^{p(x)}$ and $W^{k, p(x)}$”, Czechoslovak Math. J., 41(116):4 (1991), 592–618 | MR | Zbl

[6] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011, x+509 pp. | DOI | MR | Zbl

[7] D. Breit, L. Diening, S. Schwarzacher, “Finite element approximation of the $p(\,\cdot\,)$-Laplacian”, SIAM J. Numer. Anal., 53:1 (2015), 551–572 | DOI | MR | Zbl

[8] S. I. Repin, “A posteriori error estimation for nonlinear variational problems by duality theory”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 28, Zap. nauch. sem. POMI, 243, POMI, SPb., 1997, 201–214 ; J. Math. Sci. (N. Y.), 99:1 (2000), 927–935 | MR | Zbl | DOI

[9] V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Math. USSR-Izv., 29:1 (1987), 33–66 | DOI | MR | Zbl

[10] V. V. Zhikov, “On variational problems and nonlinear elliptic equations with nonstandard growth conditions”, J. Math. Sci. (N. Y.), 173:5 (2011), 463–570 | DOI | MR | Zbl

[11] V. V. Zhikov, “Lavrentiev phenomenon and homogenization for some variational problems”, Composite media and homogenization theory, Proceedings of the 2nd workshop (Trieste, 1993), World Sci., Singapore, 1995, 273–288 | DOI

[12] V. V. Zhikov, “On Lavrentiev's phenomenon”, Russian J. Math. Phys., 3:2 (1995), 249–269 | MR | Zbl

[13] V. V. Zhikov, “On Lavrent'ev's effect”, Dokl. Math., 52:3 (1995), 325–329 | MR | Zbl

[14] V. V. Zhikov, “Density of smooth functions in Sobolev–Orlich spaces”, J. Math. Sci. (N. Y.), 132:3 (2006), 285–294 | DOI | MR | Zbl

[15] D. E. Edmunds, J. Rákosník, “Sobolev embeddings with variable exponent”, Studia Math., 143:3 (2000), 267–293 | DOI | MR | Zbl

[16] P. Lindqvist, Notes on the $p$-Laplace equation, Rep. Univ. Jyväskylä Dep. Math. Stat., 102, Jyväskylä, Univ. of Jyväskylä, 2006, ii+80 pp. | MR | Zbl

[17] M. D. Surnachev, V. V. Zhikov, “On existence and uniqueness classes for the Cauchy problem for parabolic equations of the $p$-Laplace type”, Commun. Pure Appl. Anal., 12:4 (2013), 1783–1812 | DOI | MR | Zbl

[18] S. E. Pastukhova, D. A. Yakubovich, “Galerkin approximations in problems with anisotropic $p(\,\cdot\,)$-Laplacian”, Appl. Anal. (to appear) , Publ. online 2018 | DOI

[19] S. E. Pastukhova, “On consequences of the strong convergence in Lebesgue–Orlich spaces”, J. Math. Sci. (N. Y.), 235:3 (2018), 312–321 | DOI