Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds
Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 59-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the properties of measurable maps of complete Riemannian manifolds which induce by composition isomorphisms of the Sobolev classes with generalized first variables whose exponent of integrability is distinct from the (Hausdorff) dimension of the manifold. We show that such maps can be re-defined on a null set so that they become quasi-isometries. Bibliography: 39 titles.
Keywords: Riemannian manifold, quasi-isometric map, Sobolev space, composition operator.
@article{SM_2019_210_1_a2,
     author = {S. K. Vodopyanov},
     title = {Admissible changes of variables for {Sobolev} functions on {(sub-)Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {59--104},
     year = {2019},
     volume = {210},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_1_a2/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
TI  - Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 59
EP  - 104
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_1_a2/
LA  - en
ID  - SM_2019_210_1_a2
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%T Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds
%J Sbornik. Mathematics
%D 2019
%P 59-104
%V 210
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2019_210_1_a2/
%G en
%F SM_2019_210_1_a2
S. K. Vodopyanov. Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds. Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 59-104. http://geodesic.mathdoc.fr/item/SM_2019_210_1_a2/

[1] S. L. Sobolev, “O nekotorykh gruppakh preobrazovanii $n$-mernogo prostranstva”, Dokl. AN SSSR, 32:6 (1941), 380–382 | MR | Zbl

[2] S. K. Vodop'yanov, “Regularity of mappings inverse to Sobolev mappings”, Sb. Math., 203:10 (2012), 1383–1410 | DOI | DOI | MR | Zbl

[3] S. K. Vodop'yanov, V. M. Gol'dšteĭn,, “Lattice isomorphisms of the spaces $W^1_n$ and quasiconformal mappings”, Siberian Math. J., 16:2 (1975), 174–189 | DOI | MR | Zbl

[4] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[5] M. Nakai, “Algebraic criterion on quasiconformal equivalence of Riemann surfaces”, Nagoya Math. J., 16 (1960), 157–184 | DOI | MR | Zbl

[6] L. G. Lewis, “Quasiconformal mappings and Royden algebras in space”, Trans. Amer. Math. Soc., 158:2 (1971), 481–492 | DOI | MR | Zbl

[7] S. K. Vodop'yanov, V. M. Gol'dšteĭn, “Functional characteristics of quasiisometric mappings”, Siberian Math. J., 17:4 (1976), 580–584 | DOI | MR | Zbl

[8] S. K. Vodopyanov, V. M. Goldshtein, “Novyi funktsionalnyi invariant dlya kvazikonformnykh otobrazhenii”, Nekotorye voprosy sovremennoi teorii funktsii (Novosibirsk, 1976), IM SO AN SSSR, Novosibirsk, 1976, 18–20 | MR

[9] S. K. Vodop'yanov, “Mappings of homogeneous groups and imbeddings of functional spaces”, Siberian Math. J., 30:5 (1989), 685–698 | DOI | MR | Zbl

[10] V. M. Gol'dshtein, A. S. Romanov, “Transformations that preserve Sobolev spaces”, Siberian Math. J., 25:3 (1984), 382–388 | DOI | MR | Zbl

[11] A. S. Romanov, “O zamene peremennoi v prostranstvakh potentsialov Besselya i Rissa”, Funktsionalnyi analiz i matematicheskaya fizika, IM SO AN SSSR, Novosibirsk, 1985, 117–133 | MR | Zbl

[12] S. K. Vodopyanov, “$L_p$-teoriya potentsiala i kvazikonformnye otobrazheniya na odnorodnykh gruppakh”, Sovremennye problemy geometrii i analiza, Tr. In-ta matem., 14, Nauka, Novosibirsk, 1989, 45–89 | MR | Zbl

[13] S. K. Vodopyanov, “Composition operators on Sobolev spaces”, Complex analysis and dynamical systems II (Nahariya, 2003), Contemp. Math., 382, Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, 2005, 401–415 | DOI | MR | Zbl

[14] S. K. Vodop'yanov, N. A. Evseev, “Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings”, Siberian Math. J., 55:5 (2014), 817–848 | DOI | MR | Zbl

[15] S. K. Vodop'yanov, N. A. Evseev, “Isomorphisms of Sobolev spaces on Carnot groups and metric properties of mappings”, Dokl. Math., 92:2 (2015), 532–536 | DOI | DOI | MR | Zbl

[16] S. K. Vodop'yanov, N. A. Evseev, “Isomorphisms of Sobolev spaces on Carnot groups and quasiconformal mappings”, Siberian Math. J., 56:5 (2015), 789–821 | DOI | DOI | MR | Zbl

[17] V. G. Maz'ya, T. O. Shaposhnikova, Theory of multipliers in spaces of differentiable functions, Monogr. Stud. Math., 23, Pitman, Boston, MA, 1985, xiii+344 pp. | MR | MR | Zbl | Zbl

[18] G. Bourdaud, G. Sickel, “Changes of variable in Besov spaces”, Math. Nachr., 198 (1999), 19–39 | DOI | MR | Zbl

[19] H. Koch, P. Koskela, E. Saksman, T. Soto, “Bounded compositions on scaling invariant Besov spaces”, J. Funct. Anal., 266:5 (2014), 2765–2788 | DOI | MR | Zbl

[20] P. Koskela, Dachun Yang, Yuan Zhou, “Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings”, Adv. Math., 226:4 (2011), 3579–3621 | DOI | MR | Zbl

[21] S. K. Vodopyanov, “On admissible changes of variables for Sobolev functions on (sub)Riemannian manifolds”, Dokl. Math., 93:3 (2016), 318–321 | DOI | DOI | MR | Zbl

[22] S. K. Vodop'yanov, V. M. Gol'dshtein, “Criteria for the removability of sets in spaces of $L^1_p$ quasiconformal and quasi-isometric mappings”, Sib. Math. J., 18 (1977), 35–50 | DOI | MR | Zbl

[23] S. K. Vodopyanov, V. M. Chernikov, “Prostranstva Soboleva i gipoellipticheskie uravneniya”, Lineinye operatory, soglasovannye s poryadkom, Tr. In-ta matem. SO RAN, 29, IM SO RAN, Novosibirsk, 1995, 7–62 ; V. M. Chernikov, S. K. Vodop'yanov, “Sobolev spaces and hypoelliptic equations. I”, Siberian Adv. Math., 6:3 (1996), 27–67 ; II:4, 64–96 | MR | Zbl | MR | MR

[24] S. K. Vodop'yanov, A. D. Ukhlov, “Approximately differentiable transformations and change of variables on nilpotent groups”, Siberian Math. J., 37:1 (1996), 62–78 | DOI | MR | Zbl

[25] S. K. Vodop'yanov, “$\mathscr P$-differentiability on Carnot groups in different topologies and related topics”, Trudy po analizu i geometrii (Novosibirsk, 1999), IM SO RAN, Novosibirsk, 2000, 603–670 | MR | Zbl

[26] S. K. Vodop'yanov, “Differentiability of maps of Carnot groups of Sobolev classes”, Sb. Math., 194:6 (2003), 857–877 | DOI | DOI | MR | Zbl

[27] S. K. Vodop'yanov, A. D. Ukhlov, “Superposition operators in Sobolev spaces”, Russian Math. (Iz. VUZ), 46:10 (2002), 9–31 | MR | Zbl

[28] S. K. Vodop'yanov, A. D. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Siberian Adv. Math., 14:4 (2004), 78–125 | MR | Zbl

[29] Yu. G. Reshetnyak, “Sobolev-type classes of functions with values in a metric space”, Siberian Math. J., 38:3 (1997), 567–583 | DOI | MR | Zbl

[30] S. K. Vodopyanov, “Geometry of Carnot–Carathéodory spaces and differentiability of mappings”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 249–301 | DOI | MR | Zbl

[31] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | MR | Zbl | Zbl

[32] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992, viii+268 pp. | MR | Zbl

[33] P. Hajłasz, “Change of variables formula under the minimal assumptions”, Colloq. Math., 64:1 (1993), 93–101 | DOI | MR | Zbl

[34] G. de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Actualités Sci. Ind., 1222, = Publ. Inst. Math. Univ. Nancago III, Hermann et Cie, Paris, 1955, vii+196 pp. | MR | MR | Zbl

[35] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl

[36] D. V. Isangulova, S. K. Vodopyanov, “Coercive estimates and integral representation formulas on Carnot groups”, Eurasian Math. J., 1:3 (2010), 58–96 | MR | Zbl

[37] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp. | MR | Zbl

[38] D. V. Isangulova, S. K. Vodopyanov, “Sharp geometric rigidity of isometries on Heisenberg groups”, Math. Ann., 355:4 (2013), 1301–1329 | DOI | MR | Zbl

[39] Yu. G. Reshetnyak, Space mappings with bounded distortion, Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, xvi+362 pp. | MR | MR | Zbl | Zbl