Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds
Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 59-104

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the properties of measurable maps of complete Riemannian manifolds which induce by composition isomorphisms of the Sobolev classes with generalized first variables whose exponent of integrability is distinct from the (Hausdorff) dimension of the manifold. We show that such maps can be re-defined on a null set so that they become quasi-isometries. Bibliography: 39 titles.
Keywords: Riemannian manifold, quasi-isometric map, Sobolev space, composition operator.
@article{SM_2019_210_1_a2,
     author = {S. K. Vodopyanov},
     title = {Admissible changes of variables for {Sobolev} functions on {(sub-)Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {59--104},
     publisher = {mathdoc},
     volume = {210},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_1_a2/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
TI  - Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 59
EP  - 104
VL  - 210
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_1_a2/
LA  - en
ID  - SM_2019_210_1_a2
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%T Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds
%J Sbornik. Mathematics
%D 2019
%P 59-104
%V 210
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_1_a2/
%G en
%F SM_2019_210_1_a2
S. K. Vodopyanov. Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds. Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 59-104. http://geodesic.mathdoc.fr/item/SM_2019_210_1_a2/