The problem of constructing unsaturated quadrature formulae on an interval
Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 24-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Unsaturated quadrature formulae are constructed which are well conditioned on the finite interval $I=[-1,1]$ with $L_p[I]$-weight function, $1. A specific feature of such formulae is the absence of the principal error term, which ensures that they can be automatically readjusted (with an increased number of nodes) to any excessive (extraordinary) amount of smoothness of the integrands. All the key parameters of quadratures (the nodes, the coefficients and the condition number) are evaluated within a single general approach based on the solution of a number of special boundary-value problems in the theory of meromorphic functions in the unit disc. For particular weight functions, which have important applications, algorithms for evaluating all the parameters of the quadratures efficiently are put forward. For $C^\infty$-smooth integrands, an answer is given with an absolutely sharp exponential error estimate. The sharpness of the estimate is secured by the asymptotic behaviour of the Alexandrov $n$-width of a compact set of $C^\infty$-smooth functions, which goes to zero exponentially (as the number of nodes goes off to infinity). Bibliography: 32 titles.
Keywords: unsaturation, roundoff error, well conditioning, exponential convergence.
Mots-clés : quadrature formula
@article{SM_2019_210_1_a1,
     author = {V. N. Belykh},
     title = {The problem of constructing unsaturated quadrature formulae on an interval},
     journal = {Sbornik. Mathematics},
     pages = {24--58},
     year = {2019},
     volume = {210},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_1_a1/}
}
TY  - JOUR
AU  - V. N. Belykh
TI  - The problem of constructing unsaturated quadrature formulae on an interval
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 24
EP  - 58
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_1_a1/
LA  - en
ID  - SM_2019_210_1_a1
ER  - 
%0 Journal Article
%A V. N. Belykh
%T The problem of constructing unsaturated quadrature formulae on an interval
%J Sbornik. Mathematics
%D 2019
%P 24-58
%V 210
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2019_210_1_a1/
%G en
%F SM_2019_210_1_a1
V. N. Belykh. The problem of constructing unsaturated quadrature formulae on an interval. Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 24-58. http://geodesic.mathdoc.fr/item/SM_2019_210_1_a1/

[1] N. Bakhvalov, Méthodes numériques. Analyse, algèbre, équations différentielles ordinaires, Mir, M., 1976, 606 pp. | MR | MR | Zbl | Zbl

[2] S. Nikolski, Fórmulas de cuadratura, Editorial Mir, M., 1990, 293 pp. | MR | MR | Zbl | Zbl

[3] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. ; S. L. Sobolev, Cubature formulas and modern analysis. An introduction, Gordon and Breach Science Publishers, Montreux, 1992, xvi+379 pp. | MR | Zbl | MR | Zbl

[4] I. P. Mysovskikh, Interpolyatsionnye kvadraturnye formuly, Nauka, M., 1981, 336 pp. | MR | Zbl

[5] M. D. Ramazanov, Reshetchatye kubaturnye formuly na izotropnykh prostranstvakh, IMVTs UNTs RAN, Ufa, 2014, 210 pp.

[6] Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoi fiziki, ed. K. I. Babenko, Nauka, M., 1979, 296 pp. | MR | Zbl

[7] V. L. Vaskevich, Garantirovannaya tochnost vychisleniya mnogomernykh integralov, Diss. ... dokt. fiz.-matem. nauk, IM im. S. L. Soboleva SO RAN, Novosibirsk, 2003, 243 pp.

[8] K. I. Babenko, Osnovy chislennogo analiza, Nauka, M., 1986, 744 pp. ; 2-е изд., НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2002, 848 с. | MR | Zbl

[9] V. N. Belykh, “Nenasyschaemye kvadraturnye formuly na otrezke (k probleme K. I. Babenko)”, Dokl. RAN, 467:5 (2016), 509–513 | DOI | MR | Zbl

[10] V. N. Belykh, “Nenasyschaemyi chislennyi metod resheniya vneshnei osesimmetrichnoi zadachi Neimana dlya uravneniya Laplasa”, Sib. matem. zhurn., 52:6 (2011), 1234–1252 | MR | Zbl

[11] V. N. Belykh, “Osobennosti realizatsii nenasyschaemogo chislennogo metoda dlya vneshnei osesimmetrichnoi zadachi Neimana”, Sib. matem. zhurn., 54:6 (2013), 1237–1249 | MR | Zbl

[12] S. K. Godunov, A. G. Antonov, O. P. Kirilyuk, V. I. Kostin, Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, 2-e izd., pererab. i dop., Nauka, Novosibirsk, 1992, 353 pp. ; S. K. Godunov, A. G. Antonov, O. P. Kiriljuk, V. I. Kostin, Guaranteed accuracy in numerical linear algebra, Math. Appl., 252, Kluwer Acad. Publ., Dordrecht, 1993, xii+535 pp. | MR | Zbl | DOI | MR | Zbl

[13] Dzh. Demmel, Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001, 436 pp.; J. W. Demmel, Applied numerical linear algebra, SIAM, Philadelphia, PA, 1997, xii+419 pp. | DOI | MR | Zbl

[14] L. N. Trefethen, D. Bau, Numerical linear algebra, SIAM, Philadelphia, PA, 1997, xii+361 pp. | MR | Zbl

[15] K. I. Babenko, “Ob odnom podkhode k otsenke kachestva vychislitelnykh algoritmov”, Preprinty IPM im. M. V. Keldysha, 1974, 007, 68 pp.

[16] K. I. Babenko, “Estimating the quality of computational algorithms. I”, Comput. Methods Appl. Mech. Engrg., 7:1 (1976), 47–73 ; II:2, 135–152 | DOI | MR | Zbl | DOI | MR | Zbl

[17] K. I. Babenko, “O nekotorykh obschikh svoistvakh vychislitelnykh algoritmov”, Preprinty IPM im. M. V. Keldysha, 1977, 029, 71 pp. | MR

[18] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | MR | Zbl | Zbl

[19] I. K. Daugavet, Vvedenie v klassicheskuyu teoriyu priblizheniya funktsii, SPbGU, SPb., 2011, 230 pp.

[20] P. Erdős, E. Feldheim, “Sur le mode de convergence pour l'interpolation de Lagrange”, C. R. Acad. Sci. Paris, 203 (1936), 913–915 | Zbl

[21] A. K. Varma, P. Vértesi, “Some Erdős–Feldheim type theorems on mean convergence of Lagrange interpolation”, J. Math. Anal. Appl., 91:1 (1983), 68–79 | DOI | MR | Zbl

[22] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. ; T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | Zbl | MR | Zbl

[23] S. M. Nikolskii, “Ob odnom funktsionalnom neravenstve”, Izbrannye trudy, v 3-kh t., v. 1, Nauka, M., 2006, 36–38

[24] K. I. Babenko, V. A. Stebunov, “O spektralnoi zadache Orra–Zommerfelda”, Preprinty IPM im. M. V. Keldysha, 1975, 093, 34 pp.

[25] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 511 pp. | MR | Zbl

[26] C. M. Nikolskii, “O nailuchshem priblizhenii mnogochlenami funktsii, udovletvoryayuschikh usloviyu Lipshitsa”, Izv. AN SSSR. Ser. matem., 10:4 (1946), 295–322 | MR | Zbl

[27] N. Bourbaki, Éléments de mathématique. I. Les structures fondamentales de l'analyse. Livre IV: Fonctions d'une variable réelle (théorie élémentaire). Ch. 1: Dérievées. Ch. 2: Primitives et intégrales. Ch. 3: Fonctions élémentaires, Actualités Sci. Indust., 1074, 2-ème éd., Hermann, Paris, 1958, 184 pp. | MR | MR | Zbl

[28] G. N. Pykhteev, “Tochnye metody vychisleniya integralov tipa Koshi po razomknutomu konturu”, Apl. Mat., 10:4 (1965), 351–372 | MR | Zbl

[29] F. D. Gakhov, Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963, 639 pp. ; F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford–New York–Paris; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1966, xix+561 pp. | MR | Zbl | MR | Zbl

[30] M. D. Ramazanov, “Asimptoticheski optimalnye reshetchatye kubaturnye formuly s ogranichennym pogranichnym sloem i svoistvom nenasyschaemosti”, Matem. sb., 204:7 (2013), 71–96 | DOI | MR | Zbl

[31] K. I. Babenko, “O priblizhenii periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, Dokl. AN SSSR, 132:2 (1960), 247–250 | MR | Zbl

[32] K. I. Babenko, “O priblizhenii odnogo klassa periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, Dokl. AN SSSR, 132:5 (1960), 982–985 | MR | Zbl