Controllability and second-order necessary conditions for optimality
Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 1-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions for the local controllability of a control system of ordinary differential equations are presented. These conditions are meaningful in the case where the linear approximation of the system is not completely controllable. Second-order necessary conditions for optimality for the problem of optimal control are obtained as a corollary. Bibliography: 13 titles.
Keywords: controllability, optimal control, second-order conditions.
@article{SM_2019_210_1_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Controllability and second-order necessary conditions for optimality},
     journal = {Sbornik. Mathematics},
     pages = {1--23},
     year = {2019},
     volume = {210},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_1_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Controllability and second-order necessary conditions for optimality
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1
EP  - 23
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_1_a0/
LA  - en
ID  - SM_2019_210_1_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Controllability and second-order necessary conditions for optimality
%J Sbornik. Mathematics
%D 2019
%P 1-23
%V 210
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2019_210_1_a0/
%G en
%F SM_2019_210_1_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Controllability and second-order necessary conditions for optimality. Sbornik. Mathematics, Tome 210 (2019) no. 1, pp. 1-23. http://geodesic.mathdoc.fr/item/SM_2019_210_1_a0/

[1] V. M. Tikhomirov, Printsip Lagranzha i zadachi optimalnogo upravleniya, MGU, M., 1982

[2] E. R. Avakov, G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Lagrange's principle in extremum problems with constraints”, Russian Math. Surveys, 68:3 (2013), 401–433 | DOI | DOI | MR | Zbl

[3] V. A. Zorich, Mathematical analysis, v. II, Universitext, 2nd ed., Springer-Verlag, Berlin, 2004, xvi+681 pp. | DOI | MR | MR | Zbl | Zbl

[4] E. R. Avakov, G. G. Magaril-Il'yaev, “Relaxation and controllability in optimal control problems”, Sb. Math., 208:5 (2017), 585–619 | DOI | DOI | MR | Zbl

[5] R. E. Kalman, “Discussion: “On the existence of optimal controls””, ASME J. Basic. Eng., 84:1 (1962), 21–22 | DOI

[6] E. B. Lee, L. Markus, Foundations of optimal control theory, John Wiley Sons, Inc., New York–London–Sydney, 1967, x+576 pp. | MR | MR | Zbl | Zbl

[7] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl

[8] N. N. Petrov, “Ob upravlyaemosti avtonomnykh sistem”, Differents. uravneniya, 4:4 (1968), 606–617 | MR | Zbl

[9] H. J. Sussmann, “A general theorem on local controllability”, SIAM J. Control Optim., 25:1 (1987), 158–194 | DOI | MR | Zbl

[10] A. V. Arutyunov, V. Jacimovic, “2-normal processes in controlled dynamical systems”, Differ. Equ., 38:8 (2002), 1081–1094 | DOI | MR | Zbl

[11] E. S. Levitin, A. A. Milyutin, N. P. Osmolovskii, “Conditions of high order for a local minimum in problems with constraints”, Russian Math. Surveys, 33:6 (1978), 97–168 | DOI | MR | Zbl

[12] N. P. Osmolovskii, “Necessary quadratic conditions of extremum for discontinuous controls in optimal control problems with mixed constraints”, J. Math. Sci. (N. Y.), 183:4 (2012), 435–576 | DOI | MR | Zbl

[13] G. A. Bliss, Lectures on the calculus of variations, Univ. of Chicago Press, Chicago, Ill., 1946, ix+296 pp. | MR | Zbl