Some arithmetic properties of the values of entire functions of finite order and their first derivatives
Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1788-1802 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational function of special form of an exponential. For entire functions of finite order which are not representable in the form of a finite linear combination of exponentials, we obtain an estimate for the number of points (in any fixed disc) at which the values of the function itself and its first derivative are algebraic numbers of bounded degree and height. Bibliography: 8 titles.
Keywords: entire function of finite order, derivative, algebraic values, exponentials.
@article{SM_2019_210_12_a6,
     author = {A. Ya. Yanchenko},
     title = {Some arithmetic properties of the values of entire functions of finite order and their first derivatives},
     journal = {Sbornik. Mathematics},
     pages = {1788--1802},
     year = {2019},
     volume = {210},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_12_a6/}
}
TY  - JOUR
AU  - A. Ya. Yanchenko
TI  - Some arithmetic properties of the values of entire functions of finite order and their first derivatives
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1788
EP  - 1802
VL  - 210
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_12_a6/
LA  - en
ID  - SM_2019_210_12_a6
ER  - 
%0 Journal Article
%A A. Ya. Yanchenko
%T Some arithmetic properties of the values of entire functions of finite order and their first derivatives
%J Sbornik. Mathematics
%D 2019
%P 1788-1802
%V 210
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2019_210_12_a6/
%G en
%F SM_2019_210_12_a6
A. Ya. Yanchenko. Some arithmetic properties of the values of entire functions of finite order and their first derivatives. Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1788-1802. http://geodesic.mathdoc.fr/item/SM_2019_210_12_a6/

[1] G. Pólya, “Ueber ganzwertige ganze Funktionen”, Rend. Circ. Mat. Palermo, 40 (1915), 1–16 | DOI | Zbl

[2] A. O. Gelfond, Transcendental and algebraic numbers, Dover Publications, Inc., New York, 1960, vii+190 pp. | MR | MR | Zbl | Zbl

[3] I. P. Rochev, “A generalization of Gelfond's and Waldschmidt's theorems on integer-valued entire functions”, Sb. Math., 202:8 (2011), 1207–1229 | DOI | DOI | MR | Zbl

[4] M. Welter, “Sur un théorèm de Gel'fond–Selberg et une conjecture de Bundschuh–Shiokawa”, Acta Arith., 116:4 (2005), 363–385 | DOI | MR | Zbl

[5] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, RI, 1964, viii+493 pp. | MR | MR | Zbl | Zbl

[6] N. I. Fel'dman, “Simultaneous approximation of the periods of an elliptic function by algebraic numbers”, Amer. Math. Soc. Transl. Ser. 2, 59, Amer. Math. Soc., Providence, RI, 1966, 271–284 | DOI | MR | Zbl

[7] N. I. Fel'dman, “Estimate for a linear form of logarithms of algebraic numbers”, Math. USSR-Sb., 5:2 (1968), 291–307 | DOI | MR | Zbl

[8] V. G. Sprindzhuk, Classical Diophantine equations, Lecture Notes in Math., 1559, Springer-Verlag, Berlin, 1993, xii+228 pp. | DOI | MR | MR | Zbl | Zbl