Universality of $L$-Dirichlet functions and nontrivial zeros of the Riemann zeta-function
Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1753-1773 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a joint discrete universality theorem for Dirichlet $L$-functions concerning joint approximation of a tuple of analytic functions by shifts $L(s+ih\gamma_k, \chi_1),\dots,L(s+ih\gamma_k,\chi_r)$, where $0<\gamma_1<\gamma_2<\dotsb$ is the sequence of imaginary parts of the nontrivial zeros of the Riemann zeta-function, $h$ is a fixed positive number, and $\chi_1,\dots,\chi_r$ are pairwise nonequivalent Dirichlet characters. We use a weak form of Montgomery's conjecture on the correlation of pairs of zeros of the Riemann zeta-function in the analysis. Moreover, we show the universality of certain compositions of Dirichlet $L$-functions with operators in the space of analytic functions. Bibliography: 31 titles.
Keywords: Montgomery's conjecture on correlation of pairs, Riemann zeta-function, Dirichlet $L$-function, nontrivial zeros, Voronin's theorem, universality.
@article{SM_2019_210_12_a4,
     author = {A. Laurin\v{c}ikas and J. Petu\v{s}kinait\.{e}},
     title = {Universality of $L${-Dirichlet} functions and~nontrivial zeros of the {Riemann} zeta-function},
     journal = {Sbornik. Mathematics},
     pages = {1753--1773},
     year = {2019},
     volume = {210},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_12_a4/}
}
TY  - JOUR
AU  - A. Laurinčikas
AU  - J. Petuškinaitė
TI  - Universality of $L$-Dirichlet functions and nontrivial zeros of the Riemann zeta-function
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1753
EP  - 1773
VL  - 210
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_12_a4/
LA  - en
ID  - SM_2019_210_12_a4
ER  - 
%0 Journal Article
%A A. Laurinčikas
%A J. Petuškinaitė
%T Universality of $L$-Dirichlet functions and nontrivial zeros of the Riemann zeta-function
%J Sbornik. Mathematics
%D 2019
%P 1753-1773
%V 210
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2019_210_12_a4/
%G en
%F SM_2019_210_12_a4
A. Laurinčikas; J. Petuškinaitė. Universality of $L$-Dirichlet functions and nontrivial zeros of the Riemann zeta-function. Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1753-1773. http://geodesic.mathdoc.fr/item/SM_2019_210_12_a4/

[1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, PhD thesis, Indian Stat. Inst., Calcutta, 1981

[2] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | Zbl

[3] E. Buivydas, A. Laurinčikas, “A discrete version of the Mishou theorem”, Ramanujan J., 38:2 (2015), 331–347 | DOI | MR | Zbl

[4] E. Buivydas, A. Laurinčikas, “A generalized discrete universality theorem for the Riemann and Hurwitz zeta-functions”, Lith. Math. J., 55:2 (2015), 193–206 | DOI | MR | Zbl

[5] R. Garunkštis, A. Laurinčikas, R. Macaitien{. e}, “Zeros of the Riemann zeta-function and its universality”, Acta Arith., 181:2 (2017), 127–142 | DOI | MR | Zbl

[6] A. Dubickas, A. Laurinčikas, “Joint discrete universality of Dirichlet $L$-functions”, Arch. Math. (Basel), 104:1 (2015), 25–35 | DOI | MR | Zbl

[7] A. Dubickas, A. Laurinčikas, “Distribution modulo 1 and the discrete universality of the Riemann zeta-function”, Abh. Math. Semin. Univ. Hambg., 86:1 (2016), 79–87 | DOI | MR | Zbl

[8] H. Heyer, Probability measures on locally compact groups, Ergeb. Math. Grenzgeb., 94, Springer-Verlag, Berlin–New York, 1977, x+531 pp. | DOI | MR | MR | Zbl | Zbl

[9] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1974, xiv+390 pp. | MR | MR | Zbl | Zbl

[10] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996, xiv+297 pp. | DOI | MR | Zbl

[11] A. Laurinčikas, “On joint universality of Dirichlet $L$-functions”, Chebyshevskii sb., 12:1 (2011), 124–139 | MR | Zbl

[12] A. Laurinčikas, “Discrete universality of the Riemann zeta-function and uniform distribution modulo 1”, Algebra i analiz, 30:1 (2018), 139–150 ; St. Petersburg Math. J., 30:1 (2019), 103–110 | MR | Zbl

[13] A. Laurinčikas, “Joint discrete universality of Hurwitz zeta functions”, Sb. Math., 205:11 (2014), 1599–1619 | DOI | DOI | MR | Zbl

[14] A. Laurinčikas, “A discrete version of the Mishou theorem. II”, Proc. Steklov Inst. Math., 296 (2017), 172–182 | DOI | DOI | MR | Zbl

[15] A. Laurinčikas, “Joint value distribution theorems for the Riemann and Hurwitz zeta-functions”, Mosc. Math. J., 18:2 (2018), 349–366 | DOI | MR | Zbl

[16] A. Laurinčikas, “Joint discrete universality for periodic zeta-functions”, Quaest. Math., 42:5 (2019), 687–699 | DOI | MR | Zbl

[17] A. Laurinčikas, R. Macaitien{. e}, D. Šiaučiūnas, “Uniform distribution modulo 1 and the joint universality of Dirichlet $L$-functions”, Lith. Math. J., 56:4 (2016), 529–539 | DOI | MR | Zbl

[18] A. Laurinčikas, L. Meška, “Sharpening of the universality inequality”, Math. Notes, 96:6 (2014), 971–976 | DOI | DOI | MR | Zbl

[19] R. Macaitien{. e}, “On discrete universality of the Riemann zeta-function with respect to uniformly distributed shifts”, Arch. Math. (Basel), 108:3 (2017), 271–281 | DOI | MR | Zbl

[20] S. N. Mergelyan, Uniform approximations to functions of a complex variable, Amer. Math. Soc. Transl., 101, Amer. Math. Soc., Providence, RI, 1954, 99 pp. | MR | MR | Zbl | Zbl

[21] H. L. Montgomery, “The pair correlation of zeros of the zeta function”, Analytic number theory (St. Louis Univ., St. Louis, MO, 1972), Proc. Sympos. Pure Math., 24, Amer. Math. Soc., Providence, RI, 1973, 181–193 | DOI | MR | Zbl

[22] H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math., 227, Springer-Verlag, Berlin–New York, 1971, ix+178 pp. | DOI | MR | MR | Zbl | Zbl

[23] Ł. Pańkowski, “Joint universality for dependent $L$-functions”, Ramanujan J., 45:1 (2018), 181–195 | DOI | MR | Zbl

[24] A. Reich, “Werteverteilung von Zetafunktionen”, Arch. Math. (Basel), 34 (1980), 440–451 | DOI | MR | Zbl

[25] J. Steuding, Value-distribution of $L$-functions, Lecture Notes in Math., 1877, Springer, Berlin, 2007, xiv+317 pp. | DOI | MR | Zbl

[26] J. Steuding, “The roots of the equation $\zeta(s)=a$ are uniformly distributed modulo one”, Analytic and probabilistic methods in number theory, TEV, Vilnius, 2012, 243–249 | MR | Zbl

[27] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford Univ. Press, New York, 1986, x+412 pp. | MR | Zbl

[28] S. M. Voronin, “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR-Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl

[29] S. M. Voronin, “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27 (1975), 493–503 | DOI | MR | Zbl

[30] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, De Gruyter Exp. Math., 5, Walter de Gruyter Co., Berlin, 1992, xii+396 pp. | DOI | MR | MR | Zbl | Zbl

[31] S. M. Voronin, Izbrannye trudy: matematika, Izd-vo MGTU im. N. E. Baumana, M., 2006, 480 pp.