The boundary values of solutions of an elliptic equation
Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1724-1752

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the boundary behaviour of solutions of a second-order elliptic equation. Criteria are established for the existence of a boundary value of a solution of the homogeneous equation under the same conditions on the coefficients of the equation as were used to establish that the Dirichlet problem with a boundary function in $L_p$, $p>1$, has a unique solution. In particular, an analogue of Riesz's well-known theorem (on the boundary values of an analytic function) is proved: if a family of norms in the space $L_p$ of the traces of a solution on surfaces ‘parallel’ to the boundary is bounded, then this family of traces converges in $L_p$. This means that the solution of the equation under consideration is a solution of the Dirichlet problem with a certain boundary value in $L_p$. Estimates of the nontangential maximal function and of an analogue of the Luzin area integral hold for such a solution, which make it possible to claim that the boundary value is taken in a substantially stronger sense. Bibliography: 57 titles.
Keywords: boundary value, Dirichlet problem.
Mots-clés : elliptic equation
@article{SM_2019_210_12_a3,
     author = {A. K. Gushchin},
     title = {The boundary values of solutions of an elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {1724--1752},
     publisher = {mathdoc},
     volume = {210},
     number = {12},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_12_a3/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - The boundary values of solutions of an elliptic equation
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1724
EP  - 1752
VL  - 210
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_12_a3/
LA  - en
ID  - SM_2019_210_12_a3
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T The boundary values of solutions of an elliptic equation
%J Sbornik. Mathematics
%D 2019
%P 1724-1752
%V 210
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_12_a3/
%G en
%F SM_2019_210_12_a3
A. K. Gushchin. The boundary values of solutions of an elliptic equation. Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1724-1752. http://geodesic.mathdoc.fr/item/SM_2019_210_12_a3/