Antisymmetric paramodular forms of weight~3
Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1702-1723
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the construction of antisymmetric paramodular forms of canonical weight 3 has been open since 1996. Any cusp form of this type determines a canonical differential form on any smooth compactification of the moduli space of Kummer surfaces associated to $(1,t)$-polarised abelian surfaces. In this paper, we construct the first infinite family of antisymmetric paramodular forms of weight $3$ as automorphic Borcherds products whose first Fourier-Jacobi coefficient is a theta block.
Bibliography: 32 titles.
Keywords:
Siegel modular forms, automorphic Borcherds products, theta functions and Jacobi forms, moduli space of abelian and Kummer surfaces, affine Lie algebras and hyperbolic Lie algebras.
@article{SM_2019_210_12_a2,
author = {V. A. Gritsenko and H. Wang},
title = {Antisymmetric paramodular forms of weight~3},
journal = {Sbornik. Mathematics},
pages = {1702--1723},
publisher = {mathdoc},
volume = {210},
number = {12},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_12_a2/}
}
V. A. Gritsenko; H. Wang. Antisymmetric paramodular forms of weight~3. Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1702-1723. http://geodesic.mathdoc.fr/item/SM_2019_210_12_a2/