Antisymmetric paramodular forms of weight~3
Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1702-1723

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the construction of antisymmetric paramodular forms of canonical weight 3 has been open since 1996. Any cusp form of this type determines a canonical differential form on any smooth compactification of the moduli space of Kummer surfaces associated to $(1,t)$-polarised abelian surfaces. In this paper, we construct the first infinite family of antisymmetric paramodular forms of weight $3$ as automorphic Borcherds products whose first Fourier-Jacobi coefficient is a theta block. Bibliography: 32 titles.
Keywords: Siegel modular forms, automorphic Borcherds products, theta functions and Jacobi forms, moduli space of abelian and Kummer surfaces, affine Lie algebras and hyperbolic Lie algebras.
@article{SM_2019_210_12_a2,
     author = {V. A. Gritsenko and H. Wang},
     title = {Antisymmetric paramodular forms of weight~3},
     journal = {Sbornik. Mathematics},
     pages = {1702--1723},
     publisher = {mathdoc},
     volume = {210},
     number = {12},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_12_a2/}
}
TY  - JOUR
AU  - V. A. Gritsenko
AU  - H. Wang
TI  - Antisymmetric paramodular forms of weight~3
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1702
EP  - 1723
VL  - 210
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_12_a2/
LA  - en
ID  - SM_2019_210_12_a2
ER  - 
%0 Journal Article
%A V. A. Gritsenko
%A H. Wang
%T Antisymmetric paramodular forms of weight~3
%J Sbornik. Mathematics
%D 2019
%P 1702-1723
%V 210
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_12_a2/
%G en
%F SM_2019_210_12_a2
V. A. Gritsenko; H. Wang. Antisymmetric paramodular forms of weight~3. Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1702-1723. http://geodesic.mathdoc.fr/item/SM_2019_210_12_a2/