Antisymmetric paramodular forms of weight 3
Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1702-1723 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the construction of antisymmetric paramodular forms of canonical weight 3 has been open since 1996. Any cusp form of this type determines a canonical differential form on any smooth compactification of the moduli space of Kummer surfaces associated to $(1,t)$-polarised abelian surfaces. In this paper, we construct the first infinite family of antisymmetric paramodular forms of weight $3$ as automorphic Borcherds products whose first Fourier-Jacobi coefficient is a theta block. Bibliography: 32 titles.
Keywords: Siegel modular forms, automorphic Borcherds products, theta functions and Jacobi forms, moduli space of abelian and Kummer surfaces, affine Lie algebras and hyperbolic Lie algebras.
@article{SM_2019_210_12_a2,
     author = {V. A. Gritsenko and H. Wang},
     title = {Antisymmetric paramodular forms of weight~3},
     journal = {Sbornik. Mathematics},
     pages = {1702--1723},
     year = {2019},
     volume = {210},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_12_a2/}
}
TY  - JOUR
AU  - V. A. Gritsenko
AU  - H. Wang
TI  - Antisymmetric paramodular forms of weight 3
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1702
EP  - 1723
VL  - 210
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_12_a2/
LA  - en
ID  - SM_2019_210_12_a2
ER  - 
%0 Journal Article
%A V. A. Gritsenko
%A H. Wang
%T Antisymmetric paramodular forms of weight 3
%J Sbornik. Mathematics
%D 2019
%P 1702-1723
%V 210
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2019_210_12_a2/
%G en
%F SM_2019_210_12_a2
V. A. Gritsenko; H. Wang. Antisymmetric paramodular forms of weight 3. Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1702-1723. http://geodesic.mathdoc.fr/item/SM_2019_210_12_a2/

[1] A. Ash, P. E. Gunnells, M. McConnell, “Cohomology of congruence subgroups of $\operatorname{SL}_4(\mathbb Z)$. III”, Math. Comp., 79:271 (2010), 1811–1831 | DOI | MR | Zbl

[2] R. E. Borcherds, “Automorphic forms on $\operatorname{O}_{s+2,2}(\mathbb R)$ and infinite products”, Invent. Math., 120:1 (1995), 161–213 | DOI | MR | Zbl

[3] R. E. Borcherds, “Automorphic forms with singularities on Grassmannians”, Invent. Math., 132:3 (1998), 491–562 | DOI | MR | Zbl

[4] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Ch. IV: Groupes de Coxeter et systèmes de Tits. Ch. V: Groupes engendrés par des réflexions. Ch. VI: Systèmes de racines, Actualites Sci. Indust., 1337, Hermann, Paris, 1968, 288 pp. | MR | MR | Zbl | Zbl

[5] J. Breeding II, C. Poor, D. S. Yuen, “Computations of spaces of paramodular forms of general level”, J. Korean Math. Soc., 53:3 (2016), 645–689 | DOI | MR | Zbl

[6] A. Brumer, K. Kramer, “Paramodular abelian varieties of odd conductor”, Trans. Amer. Math. Soc., 366:5 (2014), 2463–2516 | DOI | MR | Zbl

[7] F. Cléry, V. Gritsenko, “Modular forms of orthogonal type and Jacobi theta-series”, Abh. Math. Semin. Univ. Hambg., 83:2 (2013), 187–217 | DOI | MR | Zbl

[8] M. Eichler, D. Zagier, The theory of Jacobi forms, Progr. Math., 55, Birkhäuser Boston, Inc., Boston, MA, 1985, v+148 pp. | DOI | MR | Zbl

[9] E. Freitag, Siegelsche Modulfunktionen, Grundlehren Math. Wiss., 254, Springer-Verlag, Berlin, 1983, x+341 pp. | DOI | MR | Zbl

[10] V. A. Gritsenko, “Modular forms and moduli spaces of abelian and $K3$ surfaces”, St. Petersburg Math. J., 6:6 (1995), 1179–1208 | MR | Zbl

[11] V. Gritsenko, “Irrationality of the moduli spaces of polarized abelian surfaces”, Int. Math. Res. Not. IMRN, 1994:6 (1994), 235–243 | DOI | MR | Zbl

[12] V. A. Gritsenko, “Reflective modular forms and applications”, Russian Math. Surveys, 73:5 (2018), 797–864 | DOI | DOI | MR | Zbl

[13] V. Gritsenko, K. Hulek, “Minimal Siegel modular threefolds”, Math. Proc. Cambridge Philos. Soc., 123:3 (1998), 461–485 | DOI | MR | Zbl

[14] V. Gritsenko, K. Hulek, “Uniruledness of orthogonal modular varieties”, J. Algebraic Geom., 23:4 (2014), 711–725 | DOI | MR | Zbl

[15] V. Gritsenko, K. Hulek, G. K. Sankaran, “Abelianisation of orthogonal groups and the fundamental group of modular varieties”, J. Algebra, 322:2 (2009), 463–478 | DOI | MR | Zbl

[16] V. A. Gritsenko, K. Hulek, G. K. Sankaran, “The Kodaira dimension of the moduli of K3 surfaces”, Invent. Math., 169:3 (2007), 519–567 | DOI | MR | Zbl

[17] V. A. Gritsenko, V. V. Nikulin, “Igusa modular forms and ‘the simplest’ Lorentzian Kac–Moody algebras”, Sb. Math., 187:11 (1996), 1601–1641 | DOI | DOI | MR | Zbl

[18] V. A. Gritsenko, V. V. Nikulin, “Automorphic forms and Lorentzian Kac–Moody algebras. II”, Internat. J. Math., 9:2 (1998), 201–275 | DOI | MR | Zbl

[19] V. Gritsenko, V. V. Nikulin, “Lorentzian Kac–Moody algebras with Weyl groups of 2-reflections”, Proc. Lond. Math. Soc. (3), 116:3 (2018), 485–533 | DOI | MR | Zbl

[20] V. Gritsenko, C. Poor, D. S. Yuen, “Borcherds products everywhere”, J. Number Theory, 148 (2015), 164–195 | DOI | MR | Zbl

[21] V. Gritsenko, C. Poor, D. S. Yuen, “Antisymmetric paramodular forms of weights 2 and 3”, Int. Math. Res. Not. IMRN, 2019, rnz011, published online ; arXiv: 1609.04146 | DOI

[22] V. Gritsenko, N.-P. Skoruppa, D. Zagier, Theta blocks, arXiv: 1907.00188

[23] V. A. Gritsenko, Haowu Wang, “Conjecture on theta-blocks of order 1”, Russian Math. Surveys, 72:5 (2017), 968–970 | DOI | DOI | MR | Zbl

[24] V. Gritsenko, Haowu Wang, “Theta block conjecture for paramodular forms of weight 2”, Proc. Amer. Math. Soc. (to appear)

[25] M. Gross, S. Popescu, “Calabi–Yau three-folds and moduli of abelian surfaces. II”, Trans. Amer. Math. Soc., 363:7 (2011), 3573–3599 | DOI | MR | Zbl

[26] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR-Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl

[27] C. Poor, J. Shurman, D. S. Yuen, “Siegel paramodular forms of weight 2 and squarefree level”, Int. J. Number Theory, 13:10 (2017), 2627–2652 | DOI | MR | Zbl

[28] C. Poor, D. S. Yuen, “Paramodular cusp forms”, Math. Comp., 84:293 (2015), 1401–1438 | DOI | MR | Zbl

[29] N. R. Scheithauer, “On the classification of automorphic products and generalized Kac–Moody algebras”, Invent. Math., 164:3 (2006), 641–678 | DOI | MR | Zbl

[30] N. R. Scheithauer, “The Weil representation of $\operatorname{SL}_2(\mathbb Z)$ and some applications”, Int. Math. Res. Not. IMRN, 2009:8 (2009), 1488–1545 | DOI | MR | Zbl

[31] N. R. Scheithauer, “Some constructions of modular forms for the Weil representation of $\operatorname{SL}(2,\mathbb Z)$”, Nagoya Math. J., 220 (2015), 1–43 | DOI | MR | Zbl

[32] N. R. Scheithauer, “Automorphic products of singular weight”, Compos. Math., 153:9 (2017), 1855–1892 | DOI | MR | Zbl