Symmetric semigroups with three generators
Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1690-1701 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the theory of numerical semigroups the Frobenius problem of finding the largest integer that does not belong to the given semigroup plays an important role. The study of the Frobenius problem suggests distinguishing the class of symmetric semigroups, which have a quite simple structure. The main result in this work is an asymptotic formula describing the growth of the number of symmetric semigroups with three generators. Bibliography: 18 titles.
Keywords: numerical semigroup, Frobenius problem.
@article{SM_2019_210_12_a1,
     author = {I. S. Vorob'ev and A. V. Ustinov},
     title = {Symmetric semigroups with three generators},
     journal = {Sbornik. Mathematics},
     pages = {1690--1701},
     year = {2019},
     volume = {210},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_12_a1/}
}
TY  - JOUR
AU  - I. S. Vorob'ev
AU  - A. V. Ustinov
TI  - Symmetric semigroups with three generators
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1690
EP  - 1701
VL  - 210
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_12_a1/
LA  - en
ID  - SM_2019_210_12_a1
ER  - 
%0 Journal Article
%A I. S. Vorob'ev
%A A. V. Ustinov
%T Symmetric semigroups with three generators
%J Sbornik. Mathematics
%D 2019
%P 1690-1701
%V 210
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2019_210_12_a1/
%G en
%F SM_2019_210_12_a1
I. S. Vorob'ev; A. V. Ustinov. Symmetric semigroups with three generators. Sbornik. Mathematics, Tome 210 (2019) no. 12, pp. 1690-1701. http://geodesic.mathdoc.fr/item/SM_2019_210_12_a1/

[1] I. Aliev, M. Henk, “Integer knapsacks: average behavior of the Frobenius numbers”, Math. Oper. Res., 34:3 (2009), 698–705 | DOI | MR | Zbl

[2] I. Aliev, M. Henk, A. Hinrichs, “Expected Frobenius numbers”, J. Combin. Theory Ser. A, 118:2 (2011), 525–531 | DOI | MR | Zbl

[3] I. Aliev, L. Fukshansky, M. Henk, “Generalized Frobenius numbers: bounds and average behavior”, Acta Arith., 155:1 (2012), 53–62 | DOI | MR | Zbl

[4] J. Bourgain, Ya. G. Sinai, “Limit behaviour of large Frobenius numbers”, Russian Math. Surveys, 62:4 (2007), 713–725 | DOI | DOI | MR | Zbl

[5] W. Duke, J. B. Friedlander, H. Iwaniec, “A quadratic divisor problem”, Invent. Math., 115:2 (1994), 209–217 | DOI | MR | Zbl

[6] R. Fröberg, C. Gottlieb, R. Häggkvist, “On numerical semigroups”, Semigroup Forum, 35:1 (1987), 63–83 | DOI | MR | Zbl

[7] D. R. Heath-Brown, “A new form of the circle method, and its application to quadratic forms”, J. Reine Angew. Math., 1996:481 (1996), 149–206 | DOI | MR | Zbl

[8] A. E. Ingham, “Some asymptotic formulae in the theory of numbers”, J. London Math. Soc., 2:3 (1927), 202–208 | DOI | MR | Zbl

[9] J. Marklof, “The asymptotic distribution of Frobenius numbers”, Invent. Math., 181:1 (2010), 179–207 | DOI | MR | Zbl

[10] J. Marklof, A. Strömbergsson, “Diameters of random circulant graphs”, Combinatorica, 33:4 (2013), 429–466 | DOI | MR | Zbl

[11] J. L. Ramírez Alfonsin, The Diophantine Frobenius problem, Oxford Lecture Ser. Math. Appl., 30, Oxford Univ. Press, Oxford, 2005, xvi+243 pp. | MR | Zbl

[12] Ö. J. Rödseth, “On a linear Diophantine problem of Frobenius”, J. Reine Angew. Math., 1978:301 (1978), 171–178 | DOI | MR | Zbl

[13] A. Strömbergsson, “On the limit distribution of Frobenius numbers”, Acta Arith., 152:1 (2012), 81–107 | DOI | MR | Zbl

[14] J. J. Sylvester, “Problems from the theory of numbers, with solutions”, Educational Times, 41 (1884), 21 | Zbl

[15] A. V. Ustinov, “The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments”, Sb. Math., 200:4 (2009), 597–627 | DOI | DOI | MR | Zbl

[16] A. V. Ustinov, “On the distribution of Frobenius numbers with three arguments”, Izv. Math., 74:5 (2010), 1023–1049 | DOI | DOI | MR | Zbl

[17] A. V. Ustinov, “Geometric proof of Rødseth's formula for Frobenius numbers”, Proc. Steklov Inst. Math., 276 (2012), 275–282 | DOI | MR | Zbl

[18] I. S. Vorob'ev, “On the Frobenius problem for three arguments”, Sb. Math., 207:6 (2016), 816–840 | DOI | DOI | MR | Zbl