`Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings
Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1633-1662 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spectrum of a two-dimensional problem in elasticity theory is investigated for a body $\Omega^h$ with a cuspidal sharpening with a short tip of length $h>0$ that is broken off. It is known that when the tip is in place, the spectrum of the problem for $\Omega^0$ has a continuous component $[\Lambda_\dagger,+\infty)$ with positive cut-off point $\Lambda_\dagger>0$. We show that each point $\Lambda>\Lambda_\dagger$ is a ‘blinking’ eigenvalue, that is, it is an actual eigenvalue of the problem in $\Omega^h$ ‘almost periodically’ in the scale of $|\ln h|$. Among families of eigenvalues $\Lambda^h_{m(h)}$, which continuously depend on $h$, we discover ‘gliding’ eigenvalues, which fall down along the real axis at a great rate, $O((\Lambda^h_{m(h)}-\Lambda_\dagger)h^{-1}|\ln h|^{-1})$, but then land softly on the threshold $\Lambda_\dagger$. This reveals a new way of forming the continuous spectrum of the problem for a cuspidal body $\Omega^0$ from the system of discrete spectra of the problems in the $\Omega^h$, $h>0$. In addition, there may be ‘hardly movable’ eigenvalues, which remain in a small neighbourhood of a fixed point for all small $h$, in contrast to ‘gliding’ eigenvalues. Bibliography: 30 titles.
Keywords: blunted cuspidal sharpening, two-dimensional elastic isotropic body, discrete and continuous spectrum, asymptotic behaviour, ‘blinking’ and ‘gliding’ eigenfrequencies.
@article{SM_2019_210_11_a5,
     author = {S. A. Nazarov},
     title = {`Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings},
     journal = {Sbornik. Mathematics},
     pages = {1633--1662},
     year = {2019},
     volume = {210},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - `Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1633
EP  - 1662
VL  - 210
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_11_a5/
LA  - en
ID  - SM_2019_210_11_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T `Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings
%J Sbornik. Mathematics
%D 2019
%P 1633-1662
%V 210
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2019_210_11_a5/
%G en
%F SM_2019_210_11_a5
S. A. Nazarov. `Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1633-1662. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a5/

[1] S. A. Nazarov, “The spectrum of the elasticity problem for a spiked body”, Siberian Math. J., 49:5 (2008), 874–893 | DOI | MR | Zbl

[2] V. Kozlov, S. A. Nazarov, “On the spectrum of an elastic solid with cusps”, Adv. Differential Equations, 21:9-10 (2016), 887–944 | MR | Zbl

[3] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei, v. 1, Ponizhenie razmernosti i integralnye otsenki, Nauch. kn., Novosibirsk, 2002, 406 pp.

[4] M. A. Mironov, “Rasprostranenie izgibnoi volny v plastine, tolschina kotoroi plavno umenshaetsya do nulya na konechnom intervale”, Akusticheskii zhurnal, 34:3 (1988), 546–547

[5] V. V. Krylov, “New type of vibration dampers utilising the effect of acoustic “black holes””, Acta Acustica united with Acustica, 90:5 (2004), 830–837

[6] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | DOI | MR | MR | Zbl | Zbl

[7] V. A. Kozlov, S. A. Nazarov, “Waves and radiation conditions in a cuspidal sharpening of elastic bodies”, J. Elasticity, 132:1 (2018), 103–140 | DOI | MR | Zbl

[8] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tip. Ulrikha i Shultse, Odessa, 1874, 58 pp.

[9] L. I. Mandelshtam, Polnoe sobranie trudov, v. 5, Lektsii po optike, teorii otnositelnosti i kvantovoi mekhanike, Izd-vo AN SSSR, M., 1950, 470 pp. | MR

[10] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979, 320 pp. | MR | Zbl

[11] S. A. Nazarov, “Umov–Mandelshtam radiation conditions in elastic periodic waveguides”, Sb. Math., 205:7 (2014), 953–982 | DOI | DOI | MR | Zbl

[12] S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106 | DOI | DOI | MR | Zbl

[13] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[14] S. A. Nazarov, “‘Wandering’ eigenfrequencies of a two-dimensional elastic body with a blunted cusp”, Dokl. Phys., 62:11 (2017), 512–516 | DOI | DOI | MR

[15] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, 2-e izd., Nauka, M., 1988, 712 pp. | Zbl

[16] V. A. Kondrat'ev, O. A. Oleinik, “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl

[17] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl

[18] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974, 159 pp.; G. Fichera, “Existence theorems in elasticity”, Handbuch der Physik, т. VIa/2, Festkörpermechanik. II, Springer-Verlag, Berlin–New York, 1972, 347–389 ; “Boundary value problems of elasticity with unilateral constraints”, 391–424 | MR | Zbl

[19] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl

[20] M. I. Višik, L. A. Ljusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Amer. Math. Soc. Transl. Ser. 2, 20, Amer. Math. Soc., Providence, RI, 1962, 239–364 | DOI | MR | MR | Zbl | Zbl

[21] S. A. Nazarov, “Notes to the proof of a weighted Korn inequality for an elastic body with peak-shaped cusps”, J. Math. Sci. (N. Y.), 181:5 (2012), 632–667 | DOI | MR | Zbl

[22] R. Leis, Initial boundary value problems in mathematical physics, B. G. Teubner, Stuttgart; John Wiley Sons, Ltd., Chichester, 1986, viii+266 pp. | DOI | MR | Zbl

[23] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16 (1967), 227–313 | MR | Zbl

[24] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl

[25] M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plate in extension”, J. Appl. Mech., 19:2 (1952), 526–528

[26] V. Z. Parton, P. I. Perlin, Mathematical methods of the theory of elasticity, v. 1, 2, Mir, Moscow, 1984, 317 pp., 356 pp. | MR | MR | Zbl | Zbl

[27] I. S. Zorin, S. A. Nazarov, “Edge effect in the bending of a thin three-dimensional plate”, J. Appl. Math. Mech., 53:4 (1989), 500–507 | DOI | MR | Zbl

[28] S. A. Nazarov, “Asymptotics of the solution of the Steklov spectral problem in a domain with a blunted peak”, Math. Notes, 86:4 (2009), 542–555 | DOI | DOI | MR | Zbl

[29] F. L. Bakharev, S. A. Nazarov, “On the structure of the spectrum for the elasticity problem in a body with a supersharp spike”, Siberian Math. J., 50:4 (2009), 587–595 | DOI | MR | Zbl

[30] S. A. Nazarov, “Elastic waves trapped by a homogeneous anisotropic semicylinder”, Sb. Math., 204:11 (2013), 1639–1670 | DOI | DOI | MR | Zbl