`Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings
Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1633-1662

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a two-dimensional problem in elasticity theory is investigated for a body $\Omega^h$ with a cuspidal sharpening with a short tip of length $h>0$ that is broken off. It is known that when the tip is in place, the spectrum of the problem for $\Omega^0$ has a continuous component $[\Lambda_\dagger,+\infty)$ with positive cut-off point $\Lambda_\dagger>0$. We show that each point $\Lambda>\Lambda_\dagger$ is a ‘blinking’ eigenvalue, that is, it is an actual eigenvalue of the problem in $\Omega^h$ ‘almost periodically’ in the scale of $|\ln h|$. Among families of eigenvalues $\Lambda^h_{m(h)}$, which continuously depend on $h$, we discover ‘gliding’ eigenvalues, which fall down along the real axis at a great rate, $O((\Lambda^h_{m(h)}-\Lambda_\dagger)h^{-1}|\ln h|^{-1})$, but then land softly on the threshold $\Lambda_\dagger$. This reveals a new way of forming the continuous spectrum of the problem for a cuspidal body $\Omega^0$ from the system of discrete spectra of the problems in the $\Omega^h$, $h>0$. In addition, there may be ‘hardly movable’ eigenvalues, which remain in a small neighbourhood of a fixed point for all small $h$, in contrast to ‘gliding’ eigenvalues. Bibliography: 30 titles.
Keywords: blunted cuspidal sharpening, two-dimensional elastic isotropic body, discrete and continuous spectrum, asymptotic behaviour, ‘blinking’ and ‘gliding’ eigenfrequencies.
@article{SM_2019_210_11_a5,
     author = {S. A. Nazarov},
     title = {`Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings},
     journal = {Sbornik. Mathematics},
     pages = {1633--1662},
     publisher = {mathdoc},
     volume = {210},
     number = {11},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - `Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1633
EP  - 1662
VL  - 210
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_11_a5/
LA  - en
ID  - SM_2019_210_11_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T `Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings
%J Sbornik. Mathematics
%D 2019
%P 1633-1662
%V 210
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_11_a5/
%G en
%F SM_2019_210_11_a5
S. A. Nazarov. `Blinking' and `gliding' eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1633-1662. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a5/