Commuting homogeneous locally nilpotent derivations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1609-1632
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X$ be an affine algebraic variety endowed with an action of complexity one of an algebraic torus $\mathbb T$. It is well known that homogeneous locally nilpotent derivations on the algebra of regular functions $\mathbb K[X]$ can be described in terms of proper polyhedral divisors corresponding to the $\mathbb T$-variety $X$. We prove that homogeneous locally nilpotent derivations commute if and only if a certain combinatorial criterion holds. These results are used to describe actions of unipotent groups of dimension two on affine $\mathbb T$-varieties.
Bibliography: 10 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
$\mathbb T$-variety, graded algebra, locally nilpotent derivation, additive group action.
                    
                    
                    
                  
                
                
                @article{SM_2019_210_11_a4,
     author = {D. A. Matveev},
     title = {Commuting homogeneous locally nilpotent derivations},
     journal = {Sbornik. Mathematics},
     pages = {1609--1632},
     publisher = {mathdoc},
     volume = {210},
     number = {11},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a4/}
}
                      
                      
                    D. A. Matveev. Commuting homogeneous locally nilpotent derivations. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1609-1632. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a4/
