Commuting homogeneous locally nilpotent derivations
Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1609-1632 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be an affine algebraic variety endowed with an action of complexity one of an algebraic torus $\mathbb T$. It is well known that homogeneous locally nilpotent derivations on the algebra of regular functions $\mathbb K[X]$ can be described in terms of proper polyhedral divisors corresponding to the $\mathbb T$-variety $X$. We prove that homogeneous locally nilpotent derivations commute if and only if a certain combinatorial criterion holds. These results are used to describe actions of unipotent groups of dimension two on affine $\mathbb T$-varieties. Bibliography: 10 titles.
Keywords: $\mathbb T$-variety, graded algebra, locally nilpotent derivation, additive group action.
@article{SM_2019_210_11_a4,
     author = {D. A. Matveev},
     title = {Commuting homogeneous locally nilpotent derivations},
     journal = {Sbornik. Mathematics},
     pages = {1609--1632},
     year = {2019},
     volume = {210},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a4/}
}
TY  - JOUR
AU  - D. A. Matveev
TI  - Commuting homogeneous locally nilpotent derivations
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1609
EP  - 1632
VL  - 210
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_11_a4/
LA  - en
ID  - SM_2019_210_11_a4
ER  - 
%0 Journal Article
%A D. A. Matveev
%T Commuting homogeneous locally nilpotent derivations
%J Sbornik. Mathematics
%D 2019
%P 1609-1632
%V 210
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2019_210_11_a4/
%G en
%F SM_2019_210_11_a4
D. A. Matveev. Commuting homogeneous locally nilpotent derivations. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1609-1632. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a4/

[1] K. Altmann, J. Hausen, “Polyhedral divisors and algebraic torus action”, Math. Ann., 334:3 (2006), 557–607 | DOI | MR | Zbl

[2] I. Arzhantsev, A. Liendo, “Polyhedral divisors and $\operatorname{SL}_2$-actions on affine $\mathbb{T}$-varieties”, Michigan Math. J., 61:4 (2012), 731–762 | DOI | MR | Zbl

[3] D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp. | DOI | MR | Zbl

[4] G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Invariant Theory Algebr. Transform. Groups, VII, Springer-Verlag, Berlin, 2006, xii+261 pp. | DOI | MR | Zbl

[5] W. Fulton, Introduction to toric varieties, The W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | DOI | MR | Zbl

[6] A. Liendo, “$\mathbb{G}_{\mathrm{a}}$-actions of fiber type on affine $\mathbb{T}$-varieties”, J. Algebra, 324:12 (2010), 3653–3665 | DOI | MR | Zbl

[7] A. Liendo, “Affine $\mathbb{T}$-varieties of complexity one and locally nilpotent derivations”, Transform. Group, 15:2 (2010), 389–425 | DOI | MR | Zbl

[8] E. Romaskevich, “Sums and commutators of homogeneous locally nilpotent derivations of fiber type”, J. Pure Appl. Algebra, 218:3 (2014), 448–455 | DOI | MR | Zbl

[9] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic geometry IV, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278 | DOI | MR | MR | Zbl | Zbl

[10] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | MR | Zbl | Zbl