@article{SM_2019_210_11_a3,
author = {V. F. Butuzov},
title = {Asymptotic behaviour of a~boundary layer solution to a~stationary partly dissipative system with a~multiple root of the degenerate equation},
journal = {Sbornik. Mathematics},
pages = {1581--1608},
year = {2019},
volume = {210},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a3/}
}
TY - JOUR AU - V. F. Butuzov TI - Asymptotic behaviour of a boundary layer solution to a stationary partly dissipative system with a multiple root of the degenerate equation JO - Sbornik. Mathematics PY - 2019 SP - 1581 EP - 1608 VL - 210 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2019_210_11_a3/ LA - en ID - SM_2019_210_11_a3 ER -
%0 Journal Article %A V. F. Butuzov %T Asymptotic behaviour of a boundary layer solution to a stationary partly dissipative system with a multiple root of the degenerate equation %J Sbornik. Mathematics %D 2019 %P 1581-1608 %V 210 %N 11 %U http://geodesic.mathdoc.fr/item/SM_2019_210_11_a3/ %G en %F SM_2019_210_11_a3
V. F. Butuzov. Asymptotic behaviour of a boundary layer solution to a stationary partly dissipative system with a multiple root of the degenerate equation. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1581-1608. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a3/
[1] S. L. Hollis, J. J. Morgan, “Partly dissipative reaction-diffusion systems and a model of phosphorus diffusion in silicon”, Nonlinear Anal., 19:5 (1992), 427–440 | DOI | MR | Zbl
[2] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shk., M., 1990, 208 pp. | MR | Zbl
[3] V. F. Butuzov, “On the special properties of the boundary layer in singularly perturbed problems with multiple root of the degenerate equation”, Math. Notes, 94:1 (2013), 60–70 | DOI | DOI | MR | Zbl
[4] V. F. Butuzov, “On the stability and the attraction domain of the stationary solution of a singularly perturbed parabolic equation with a multiple root of the degenerate equation”, Differ. Equ., 51:12 (2015), 1593–1605 | DOI | DOI | MR | Zbl
[5] V. F. Butuzov, “On the dependence of the structure of boundary layers on the boundary conditions in a singularly perturbed boundary-value problem with multiple root of the related degenerate equation”, Math. Notes, 99:2 (2016), 210–221 | DOI | DOI | MR | Zbl
[6] V. F. Butuzov, “Asymptotic behaviour of the solution to a singularly perturbed partially dissipative system with a multiple root of the degenerate equation”, Sb. Math., 207:8 (2016), 1100–1126 | DOI | DOI | MR | Zbl
[7] K. W. Chang, F. A. Howes, Nonlinear singular perturbation phenomena: theory and applications, Appl. Math. Sci., 56, Springer-Verlag, New York, 1984, viii+180 pp. | DOI | MR | MR | Zbl
[8] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992, xvi+777 pp. | MR | Zbl
[9] N. N. Nefedov, “The method of differential inequalities for some singularly perturbed partial derivative problems”, Differ. Equ., 31:4 (1995), 668–671 | MR | Zbl
[10] N. N. Nefedov, “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differ. Equ., 31:7 (1995), 1077–1085 | MR | Zbl
[11] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl
[12] V. F. Butuzov, A. I. Bychkov, “Asymptotics of the solution to an initial boundary value problem for a singularly perturbed parabolic equation in the case of a triple root of the degenerate equation”, Comput. Math. Math. Phys., 56:4 (2016), 593–611 | DOI | DOI | MR | Zbl
[13] V. F. Butuzov, “Asymptotic behaviour and stability of solutions of a singularly perturbed elliptic problem with a triple root of the degenerate equation”, Izv. Math., 81:3 (2017), 481–504 | DOI | DOI | MR | Zbl