Schur's criterion for formal power series
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1563-1580
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A criterion for when a formal power series can be represented by a formal Schur continued fraction is stated. The proof proposed is based on a relationship, revealed here, between Hankel two-point determinants of a series and its Schur determinants. 
Bibliography: 10 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
continued fractions, Schur functions, Hankel determinants.
                    
                    
                    
                  
                
                
                @article{SM_2019_210_11_a2,
     author = {V. I. Buslaev},
     title = {Schur's criterion for formal power series},
     journal = {Sbornik. Mathematics},
     pages = {1563--1580},
     publisher = {mathdoc},
     volume = {210},
     number = {11},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/}
}
                      
                      
                    V. I. Buslaev. Schur's criterion for formal power series. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1563-1580. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/
