Schur's criterion for formal power series
Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1563-1580 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion for when a formal power series can be represented by a formal Schur continued fraction is stated. The proof proposed is based on a relationship, revealed here, between Hankel two-point determinants of a series and its Schur determinants. Bibliography: 10 titles.
Keywords: continued fractions, Schur functions, Hankel determinants.
@article{SM_2019_210_11_a2,
     author = {V. I. Buslaev},
     title = {Schur's criterion for formal power series},
     journal = {Sbornik. Mathematics},
     pages = {1563--1580},
     year = {2019},
     volume = {210},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Schur's criterion for formal power series
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1563
EP  - 1580
VL  - 210
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/
LA  - en
ID  - SM_2019_210_11_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Schur's criterion for formal power series
%J Sbornik. Mathematics
%D 2019
%P 1563-1580
%V 210
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/
%G en
%F SM_2019_210_11_a2
V. I. Buslaev. Schur's criterion for formal power series. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1563-1580. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/

[1] W. B. Jones, O. Njåstad, W. J. Thron, “Schur fractions, Perron–Carathéodory fractions and Szegö polynomials, a survey”, Analytic theory of continued fractions II (Pitlochry/Aviemore, 1985), Lecture Notes in Math., 1199, Springer, Berlin, 1986, 127–158 | DOI | MR | Zbl

[2] J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 1917:147 (1917), 205–232 ; 1918:148 (1918), 122–145 | DOI | MR | Zbl | DOI | MR

[3] W. B. Jones, W. J. Thron, Continued fractions. Analytic theory and applications, Encyclopedia Math. Appl., 11, Addison–Wesley Publishing Co., Reading, MA, 1980, xxix+428 pp. | MR | MR | Zbl

[4] V. I. Buslaev, “On the convergence of continued T-fractions”, Proc. Steklov Inst. Math., 235 (2001), 29–43 | MR | Zbl

[5] V. I. Buslaev, “On Hankel determinants of functions given by their expansions in $P$-fractions”, Ukrainian Math. J., 62:3 (2010), 358–372 | DOI | MR | Zbl

[6] V. I. Buslaev, “Otsenka emkosti mnozhestva osobennostei funktsii, zadannykh svoim razlozheniem v nepreryvnuyu drob”, Anal. Math., 39:1 (2013), 1–27 | DOI | MR | Zbl

[7] V. I. Buslaev, “An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture”, Proc. Steklov Inst. Math., 293 (2016), 127–139 | DOI | DOI | MR | Zbl

[8] V. I. Buslaev, “On the Van Vleck theorem for limit-periodic continued fractions of general form”, Proc. Steklov Inst. Math., 298 (2017), 68–93 | DOI | DOI | MR | Zbl

[9] V. I. Buslaev, “On singular points of meromorphic functions determined by continued fractions”, Math. Notes, 103:4 (2018), 527–536 | DOI | DOI | MR | Zbl

[10] V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205 | DOI | DOI | MR | Zbl