@article{SM_2019_210_11_a2,
author = {V. I. Buslaev},
title = {Schur's criterion for formal power series},
journal = {Sbornik. Mathematics},
pages = {1563--1580},
year = {2019},
volume = {210},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/}
}
V. I. Buslaev. Schur's criterion for formal power series. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1563-1580. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/
[1] W. B. Jones, O. Njåstad, W. J. Thron, “Schur fractions, Perron–Carathéodory fractions and Szegö polynomials, a survey”, Analytic theory of continued fractions II (Pitlochry/Aviemore, 1985), Lecture Notes in Math., 1199, Springer, Berlin, 1986, 127–158 | DOI | MR | Zbl
[2] J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 1917:147 (1917), 205–232 ; 1918:148 (1918), 122–145 | DOI | MR | Zbl | DOI | MR
[3] W. B. Jones, W. J. Thron, Continued fractions. Analytic theory and applications, Encyclopedia Math. Appl., 11, Addison–Wesley Publishing Co., Reading, MA, 1980, xxix+428 pp. | MR | MR | Zbl
[4] V. I. Buslaev, “On the convergence of continued T-fractions”, Proc. Steklov Inst. Math., 235 (2001), 29–43 | MR | Zbl
[5] V. I. Buslaev, “On Hankel determinants of functions given by their expansions in $P$-fractions”, Ukrainian Math. J., 62:3 (2010), 358–372 | DOI | MR | Zbl
[6] V. I. Buslaev, “Otsenka emkosti mnozhestva osobennostei funktsii, zadannykh svoim razlozheniem v nepreryvnuyu drob”, Anal. Math., 39:1 (2013), 1–27 | DOI | MR | Zbl
[7] V. I. Buslaev, “An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture”, Proc. Steklov Inst. Math., 293 (2016), 127–139 | DOI | DOI | MR | Zbl
[8] V. I. Buslaev, “On the Van Vleck theorem for limit-periodic continued fractions of general form”, Proc. Steklov Inst. Math., 298 (2017), 68–93 | DOI | DOI | MR | Zbl
[9] V. I. Buslaev, “On singular points of meromorphic functions determined by continued fractions”, Math. Notes, 103:4 (2018), 527–536 | DOI | DOI | MR | Zbl
[10] V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205 | DOI | DOI | MR | Zbl