Schur's criterion for formal power series
Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1563-1580

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for when a formal power series can be represented by a formal Schur continued fraction is stated. The proof proposed is based on a relationship, revealed here, between Hankel two-point determinants of a series and its Schur determinants. Bibliography: 10 titles.
Keywords: continued fractions, Schur functions, Hankel determinants.
@article{SM_2019_210_11_a2,
     author = {V. I. Buslaev},
     title = {Schur's criterion for formal power series},
     journal = {Sbornik. Mathematics},
     pages = {1563--1580},
     publisher = {mathdoc},
     volume = {210},
     number = {11},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Schur's criterion for formal power series
JO  - Sbornik. Mathematics
PY  - 2019
SP  - 1563
EP  - 1580
VL  - 210
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/
LA  - en
ID  - SM_2019_210_11_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Schur's criterion for formal power series
%J Sbornik. Mathematics
%D 2019
%P 1563-1580
%V 210
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/
%G en
%F SM_2019_210_11_a2
V. I. Buslaev. Schur's criterion for formal power series. Sbornik. Mathematics, Tome 210 (2019) no. 11, pp. 1563-1580. http://geodesic.mathdoc.fr/item/SM_2019_210_11_a2/